scholarly journals Role of RNA structures present at the 3′UTR of dengue virus on translation, RNA synthesis, and viral replication

Virology ◽  
2005 ◽  
Vol 339 (2) ◽  
pp. 200-212 ◽  
Author(s):  
Diego E. Alvarez ◽  
Ana Laura De Lella Ezcurra ◽  
Silvana Fucito ◽  
Andrea V. Gamarnik
2014 ◽  
Vol 29 (3) ◽  
pp. 162-169 ◽  
Author(s):  
Jingjing Fan ◽  
Yi Liu ◽  
Zhiming Yuan

2008 ◽  
Vol 83 (2) ◽  
pp. 993-1008 ◽  
Author(s):  
María F. Lodeiro ◽  
Claudia V. Filomatori ◽  
Andrea V. Gamarnik

ABSTRACT The 5′ untranslated region (5′UTR) of the dengue virus (DENV) genome contains two defined elements essential for viral replication. At the 5′ end, a large stem-loop (SLA) structure functions as the promoter for viral polymerase activity. Next to the SLA, there is a short stem-loop that contains a cyclization sequence known as the 5′ upstream AUG region (5′UAR). Here, we analyzed the secondary structure of the SLA in solution and the structural requirements of this element for viral replication. Using infectious DENV clones, viral replicons, and in vitro polymerase assays, we defined two helical regions, a side stem-loop, a top loop, and a U bulge within SLA as crucial elements for viral replication. The determinants for SLA-polymerase recognition were found to be common in different DENV serotypes. In addition, structural elements within the SLA required for DENV RNA replication were also conserved among different mosquito- and tick-borne flavivirus genomes, suggesting possible common strategies for polymerase-promoter recognition in flaviviruses. Furthermore, a conserved oligo(U) track present downstream of the SLA was found to modulate RNA synthesis in transfected cells. In vitro polymerase assays indicated that a sequence of at least 10 residues following the SLA, upstream of the 5′UAR, was necessary for efficient RNA synthesis using the viral 3′UTR as template.


mBio ◽  
2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Luana de Borba ◽  
Sergio M. Villordo ◽  
Franco L. Marsico ◽  
Juan M. Carballeda ◽  
Claudia V. Filomatori ◽  
...  

ABSTRACTFlaviviruses include a diverse group of medically important viruses that cycle between mosquitoes and humans. During this natural process of switching hosts, each species imposes different selective forces on the viral population. Using dengue virus (DENV) as model, we found that paralogous RNA structures originating from duplications in the viral 3′ untranslated region (UTR) are under different selective pressures in the two hosts. These RNA structures, known as dumbbells (DB1 and DB2), were originally proposed to be enhancers of viral replication. Analysis of viruses obtained from infected mosquitoes showed selection of mutations that mapped in DB2. Recombinant viruses carrying the identified variations confirmed that these mutations greatly increase viral replication in mosquito cells, with low or no impact in human cells. Use of viruses lacking each of the DB structures revealed opposite viral phenotypes. While deletion of DB1 reduced viral replication about 10-fold, viruses lacking DB2 displayed a great increase of fitness in mosquitoes, confirming a functional diversification of these similar RNA elements. Mechanistic analysis indicated that DB1 and DB2 differentially modulate viral genome cyclization and RNA replication. We found that a pseudoknot formed within DB2 competes with long-range RNA-RNA interactions that are necessary for minus-strand RNA synthesis. Our results support a model in which a functional diversification of duplicated RNA elements in the viral 3′ UTR is driven by host-specific requirements. This study provides new ideas for understanding molecular aspects of the evolution of RNA viruses that naturally jump between different species.IMPORTANCEFlaviviruses constitute the most relevant group of arthropod-transmitted viruses, including important human pathogens such as the dengue, Zika, yellow fever, and West Nile viruses. The natural alternation of these viruses between vertebrate and invertebrate hosts shapes the viral genome population, which leads to selection of different viral variants with potential implications for epidemiological fitness and pathogenesis. However, the selective forces and mechanisms acting on the viral RNA during host adaptation are still largely unknown. Here, we found that two almost identical tandem RNA structures present at the viral 3′ untranslated region are under different selective pressures in the two hosts. Mechanistic studies indicated that the two RNA elements, known as dumbbells, contain sequences that overlap essential RNA cyclization elements involved in viral RNA synthesis. The data support a model in which the duplicated RNA structures differentially evolved to accommodate distinct functions for viral replication in the two hosts.


2001 ◽  
Vol 75 (22) ◽  
pp. 10696-10708 ◽  
Author(s):  
Traci Lyons ◽  
Kenneth E. Murray ◽  
Allan W. Roberts ◽  
David J. Barton

ABSTRACT Chimeric poliovirus RNAs, possessing the 5′ nontranslated region (NTR) of hepatitis C virus in place of the 5′ NTR of poliovirus, were used to examine the role of the poliovirus 5′ NTR in viral replication. The chimeric viral RNAs were incubated in cell-free reaction mixtures capable of supporting the sequential translation and replication of poliovirus RNA. Using preinitiation RNA replication complexes formed in these reactions, we demonstrated that the 3′ NTR of poliovirus RNA was insufficient, by itself, to recruit the viral replication proteins required for negative-strand RNA synthesis. The 5′-terminal cloverleaf of poliovirus RNA was required in cis to form functional preinitiation RNA replication complexes capable of uridylylating VPg and initiating the synthesis of negative-strand RNA. These results are consistent with a model in which the 5′-terminal cloverleaf and 3′ NTRs of poliovirus RNA interact via temporally dynamic ribonucleoprotein complexes to coordinately mediate and regulate the sequential translation and replication of poliovirus RNA.


1980 ◽  
Vol 255 (11) ◽  
pp. 5396-5403
Author(s):  
S. Shuman ◽  
E. Spencer ◽  
H. Furneaux ◽  
J. Hurwitz

Biomolecules ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 11
Author(s):  
Vanessa Loaiza-Cano ◽  
Laura Milena Monsalve-Escudero ◽  
Carlos da Silva Maia Bezerra Filho ◽  
Marlen Martinez-Gutierrez ◽  
Damião Pergentino de Sousa

Phenolic compounds have been related to multiple biological activities, and the antiviral effect of these compounds has been demonstrated in several viral models of public health concern. In this review, we show the antiviral role of phenolic compounds against dengue virus (DENV), the most widespread arbovirus globally that, after its re-emergence, has caused multiple epidemic outbreaks, especially in the last two years. Twenty phenolic compounds with anti-DENV activity are discussed, including the multiple mechanisms of action, such as those directed against viral particles or viral proteins, host proteins or pathways related to the productive replication viral cycle and the spread of the infection.


2019 ◽  
Vol 15 (4) ◽  
pp. e1007640 ◽  
Author(s):  
Thomas Langerak ◽  
Noreen Mumtaz ◽  
Vera I. Tolk ◽  
Eric C. M. van Gorp ◽  
Byron E. Martina ◽  
...  
Keyword(s):  

2011 ◽  
Vol 21 (7) ◽  
pp. 1030-1038 ◽  
Author(s):  
Kshatresh Dutta Dubey ◽  
Amit Kumar Chaubey ◽  
Rajendra Prasad Ojha

Sign in / Sign up

Export Citation Format

Share Document