antiviral effect
Recently Published Documents


TOTAL DOCUMENTS

1079
(FIVE YEARS 384)

H-INDEX

64
(FIVE YEARS 11)

Viruses ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 110
Author(s):  
Brett A. Duguay ◽  
Adrian Herod ◽  
Eric S. Pringle ◽  
Susan M. A. Monro ◽  
Marc Hetu ◽  
...  

Photodynamic inactivation (PDI) employs a photosensitizer, light, and oxygen to create a local burst of reactive oxygen species (ROS) that can inactivate microorganisms. The botanical extract PhytoQuinTM is a powerful photosensitizer with antimicrobial properties. We previously demonstrated that photoactivated PhytoQuin also has antiviral properties against herpes simplex viruses and adenoviruses in a dose-dependent manner across a broad range of sub-cytotoxic concentrations. Here, we report that human coronaviruses (HCoVs) are also susceptible to photodynamic inactivation. Photoactivated-PhytoQuin inhibited the replication of the alphacoronavirus HCoV-229E and the betacoronavirus HCoV-OC43 in cultured cells across a range of sub-cytotoxic doses. This antiviral effect was light-dependent, as we observed minimal antiviral effect of PhytoQuin in the absence of photoactivation. Using RNase protection assays, we observed that PDI disrupted HCoV particle integrity allowing for the digestion of viral RNA by exogenous ribonucleases. Using lentiviruses pseudotyped with the SARS-CoV-2 Spike (S) protein, we once again observed a strong, light-dependent antiviral effect of PhytoQuin, which prevented S-mediated entry into human cells. We also observed that PhytoQuin PDI altered S protein electrophoretic mobility. The PhytoQuin constituent emodin displayed equivalent light-dependent antiviral activity to PhytoQuin in matched-dose experiments, indicating that it plays a central role in PhytoQuin PDI against CoVs. Together, these findings demonstrate that HCoV lipid envelopes and proteins are damaged by PhytoQuin PDI and expands the list of susceptible viruses.


Viruses ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 109
Author(s):  
Kuan-Chi Tseng ◽  
Bang-Yan Hsu ◽  
Pin Ling ◽  
Wen-Wen Lu ◽  
Cheng-Wen Lin ◽  
...  

Enterovirus 71 (EV71) is an etiological agent of hand foot and mouth disease and can also cause neurological complications in young children. However, there are no approved drugs as of yet to treat EV71 infections. In this study, we conducted antiviral drug screening by using a Food and Drug Administration (FDA)-approved drug library. We identified five drugs that showed dose-dependent inhibition of viral replication. Sertraline was further characterized because it exhibited the most potent antiviral activity with the highest selectivity index among the five hits. The antiviral activity of sertraline was noted for other EV serotypes. The drug’s antiviral effect is not likely associated with its approved indications as an antidepressant and its mode-of-action as a selective serotonin reuptake inhibitor. The time-of-addition assay revealed that sertraline inhibited an EV71 infection at the entry stage. We also showed that sertraline partitioned into acidic compartments, such as endolysosomes, to neutralize the low pH levels. In agreement with the findings, the antiviral effect of sertraline could be greatly relieved by exposing virus-infected cells to extracellular low-pH culture media. Ultimately, we have identified a use for an FDA-approved antidepressant in broad-spectrum EV inhibition by blocking viral entry through the alkalization of the endolysosomal route.


2022 ◽  
Vol 50 (1) ◽  
Author(s):  
Mya Myat Ngwe Tun ◽  
Takaya Sakura ◽  
Yasuteru Sakurai ◽  
Yohei Kurosaki ◽  
Daniel Ken Inaoka ◽  
...  

Abstract Background Genetic variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) began to emerge in 2020 and have been spreading globally during the coronavirus disease 2019 (COVID-19) pandemic. Despite the presence of different COVID-19 vaccines, the discovery of effective antiviral therapeutics for the treatment of patients infected with SARS-CoV-2 are still urgently needed. A natural amino acid, 5-aminolevulinic acid (5-ALA), has exhibited both antiviral and anti-inflammatory activities. In a previous study, we demonstrated an in vitro antiviral effect of 5-ALA against SARS-CoV-2 infection without significant cytotoxicity. In the present study, we sought to investigate whether 5-ALA with or without sodium ferrous citrate (SFC) can inhibit in vitro both the original SARS-CoV-2 Wuhan strain and its variants, including the Alpha, Beta, Gamma and Delta strains. Methods The antiviral activity of ALA with or without SFC was determined in Vero-E6 cell. The virus inhibition was quantified by real time RT-PCR. Results Co-administration of 5-ALA and SFC inhibited the Wuhan, Alpha and Delta variants of SARS-CoV-2 with IC50 values of 235, 173 and 397 µM, respectively, and the Beta and Gamma variants with IC50 values of 1311 and 1516 µM. Conclusion Our study suggests that 5-ALA with SFC warrants accelerated clinical evaluation as an antiviral drug candidate for treating patients infected with SARS-CoV-2 variants.


2022 ◽  
Author(s):  
Zheng Zhihui ◽  
Yuqian Zhang ◽  
Gang Tian ◽  
Zehua Wang ◽  
Ronghua Wang ◽  
...  

Abstract Background Pudilan Xiaoyan Oral Liquid (PDL) as a famous Chinese patent medicine has been widely used for treating upper respiratory tract infection. However, the antiviral effect of PDL remain unclear. Here, the antiviral effect of in vitro and in vivo of PDL against influenza A virus were for the first time investigated. Methods The in vitro inhibitory effect of PDL on influenza A virus was investigated using MDCK cell model. The in vivo inhibitory effect on influenza virus pneumonia was evaluated with the ICR female mice (14-16 g) model infected by influenza A virus (A/FM/1/47, H1N1, mouse-adapted). Moreover, expression levels of inflammatory cytokines including TNF-α, IP10, IL-10, IL-1β, IL-6 and IFN-γ in lung tissue were measured by qRT-PCR. The potential mechanism of PDL against acute lung injury caused by influenza A virus was investigated by RT-PCR and Western blot. Results Our results indicated that in vitro PDL has a broad-spectrum inhibitory effect on different subtypes of influenza A viruses and in vivo PDL could dose-dependently prevent weight loss of mice, increase food intake and reduce mortality caused by influenza A H1N1 virus. Furthermore, PDL could markedly improve the acute lung injury caused by influenza A virus and significantly reduce the mRNA levels of inflammatory factors such as TNF-α, IP10, IL-10, IL-1β, IL-6, and IFN-γ. Mechanistic research indicated that the protective effect of PDL on viral pneumonia might be achieved by inhibiting TLR3/MyD88/IRAK4/TRAF3 signaling pathway. Conclusion PDL not only showed a good inhibitory effect on influenza A virus in vitro, but also exhibited a significant protective effect against lethal influenza virus infection in vivo. These findings provide evidence for the clinical treatment of influenza A virus infection with PDL.


2022 ◽  
Author(s):  
Rebecca L. Casazza ◽  
Drake T Philip ◽  
Helen M. Lazear

Interferon lambda (IFN-λ, type III IFN) is constitutively secreted from human placental cells in culture and reduces Zika virus (ZIKV) transplacental transmission in mice. However, the roles of IFN-λ during healthy pregnancy and in restricting congenital infection remain unclear. Here we used mice lacking the IFN-λ receptor (Ifnlr1-/-) to generate pregnancies lacking either maternal or fetal IFN-λ responsiveness and found that the antiviral effect of IFN-λ resulted from signaling exclusively in maternal tissues. This protective effect depended on gestational stage, as infection earlier in pregnancy (E7 rather than E9) resulted in enhanced transplacental transmission of ZIKV. In Ifnar1-/- dams, which sustain robust ZIKV infection, maternal IFN-λ signaling caused fetal resorption and intrauterine growth restriction. Pregnancy pathology elicited by poly(I:C) treatment also was mediated by maternal IFN-λ signaling, specifically in maternal leukocytes, and also occurred in a gestational stage-dependent manner. These findings identify an unexpected effect of IFN-λ signaling specifically in maternal (rather than placental or fetal) tissues, which is distinct from the pathogenic effects of IFN-αβ (type I IFN) during pregnancy. These results highlight the complexity of immune signaling at the maternal-fetal interface, where disparate outcomes can result from signaling at different gestational stages.


2022 ◽  
Vol 4 (2) ◽  
pp. 874-878
Author(s):  
Nita Arisanti Yulanda ◽  
Suhendri Suhendri ◽  
Keti Andriani ◽  
Riszky Safitri

SARS-CoV-2 virus was found to be targeted cells may be located in the lower respiratory tract, COVID-19 infection can cause mild, moderate to severe symptoms. The main symptoms that appear are fever (> 38oC), cough and difficulty breathing. Vitamin C treatment has an antiviral effect. Clinical trials have shown that administering high doses of vitamin C has a beneficial effect against colds. As a nurse, one of the roles as an extension agent can be carried out in handling Covid-19 patients, namely providing communication, information, and education about health to the community. The role of nurses in providing education to the community is very necessary because it can make people who are given education understand the information conveyed. In this Community Service activity, the focus is on teenagers as one of the preventive efforts against the transmission of the Covid-19 virus through the provision of Health Education on the importance of consuming vitamin C according to the needs of the adolescent body.


Viruses ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 65
Author(s):  
Marion Delphin ◽  
Suzanne Faure-Dupuy ◽  
Nathalie Isorce ◽  
Michel Rivoire ◽  
Anna Salvetti ◽  
...  

Co-infection with the hepatitis B virus and hepatitis delta virus (HDV) leads to the most aggressive form of viral hepatitis. Using in vitro infection models, we confirmed that IL-1β, a crucial innate immune molecule for pathogen control, was very potent against HBV from different genotypes. Additionally, we demonstrated for the first time a strong and rapid antiviral effect induced by very low doses of IL-1β against HDV. In parallel, using co-culture assays, we demonstrated that monocytes exposed to HBV, and in particular to HBsAg, during differentiation into pro-inflammatory macrophages secreted less IL-1β. Altogether, our data emphasize the importance of developing combined antiviral strategies that would, for instance, reduce the secretion of HBsAg and stimulate the immune system to produce endogenous IL-1β efficient against both HBV and HDV.


2021 ◽  
Author(s):  
Chunyun Qi ◽  
Daxin Pang ◽  
Kang Yang ◽  
Shuyu Jiao ◽  
Heyong Wu ◽  
...  

Classical swine fever virus (CSFV), pathogen of classic swine fever, has caused severe economic losses worldwide. Poly (rC)-binding protein 1 (PCBP1), interacting with Npro of CSFV, plays a vital role in CSFV growth. Here, our research is the first report to generate PCBP1 knockout pigs via gene editing technology. The PCBP1 knockout pigs exhibited normal birth weight, reproductive-performance traits, and developed normally. Viral challenge results indicated that primary cells isolated from F0 and F1 generation pigs could significantly reduce CSFV infection. Additional mechanism exploration further confirmed that PCBP1 KO mediated antiviral effect is related with the activation of type I interferon. Beyond showing that gene editing strategy can be used to generate PCBP1 KO pigs, our study introduces a valuable animal model for further investigating infection mechanisms of CSFV that help to develop better antiviral solution.


Molecules ◽  
2021 ◽  
Vol 27 (1) ◽  
pp. 32
Author(s):  
Daniela Gutiérrez ◽  
Almendra Benavides ◽  
Beatriz Valenzuela ◽  
Carolina Mascayano ◽  
Maialen Aldabaldetrecu ◽  
...  

The aquatic infectious pancreatic necrosis virus (IPNV) causes a severe disease in farmed salmonid fish that generates great economic losses in the aquaculture industry. In the search for new tools to control the disease, in this paper we show the results obtained from the evaluation of the antiviral effect of [Cu(NN1)2](ClO4) Cu(I) complex, synthesized in our laboratory, where the NN1 ligand is a synthetic derivate of the natural compound coumarin. This complex demonstrated antiviral activity against IPNV at 5.0 and 15.0 µg/mL causing a decrease viral load 99.0% and 99.5%, respectively. The Molecular Docking studies carried out showed that the copper complex would interact with the VP2 protein, specifically in the S domain, altering the process of entry of the virus into the host cell.


2021 ◽  
Vol 12 ◽  
Author(s):  
Panrao Liu ◽  
Danhe Hu ◽  
Lili Yuan ◽  
Zhengmin Lian ◽  
Xiaohui Yao ◽  
...  

Pseudorabies virus (PRV) is a pathogen that causes substantial economic losses to the swine industry. With the emergence and widespread of PRV variants since 2011 in China, current commercial vaccines cannot provide complete protection against PRV infection. Therefore, antiviral drugs may work as an alternative way to control and prevent PRV. In this study, the inhibitory effects and underlying molecular mechanisms of meclizine against PRV were studied. Meclizine displayed a significant inhibitory effect against PRV when it was added before, simultaneously with, or after virus infection. The inhibitory effect of meclizine occurred during viral entry and cell-to-cell spreading but not at viral attachment into PK-15 cells. Meclizine also inhibited viral particle release at the late stage of infection. The antiviral effect of meclizine was tested in mice, and the results showed that meclizine reduced the severity of clinical symptoms and the viral loads in tissues, and delayed the death, after PRV challenge. The above results indicated that meclizine had an inhibitory effect on PRV. Our findings will contribute to the development of potential therapeutic drugs against PRV infection.


Sign in / Sign up

Export Citation Format

Share Document