scholarly journals Enhancer mutations of Akv murine leukemia virus inhibit the induction of mature B-cell lymphomas and shift disease specificity towards the more differentiated plasma cell stage

Virology ◽  
2007 ◽  
Vol 362 (1) ◽  
pp. 179-191 ◽  
Author(s):  
Karina Dalsgaard Sørensen ◽  
Sandra Kunder ◽  
Leticia Quintanilla-Martinez ◽  
Jonna Sørensen ◽  
Jörg Schmidt ◽  
...  
2006 ◽  
Vol 80 (8) ◽  
pp. 4026-4037 ◽  
Author(s):  
Véronique Voisin ◽  
Corinne Barat ◽  
Trang Hoang ◽  
Eric Rassart

ABSTRACT The Graffi murine leukemia virus (MuLV) was isolated in 1954 by Arnold Graffi, who characterized it as a myeloid leukemia-inducing retrovirus. He and his team, however, soon observed the intriguing phenomenon of hematological diversification, which corresponded to a decrease of myeloid leukemias and an increase of other types of leukemias. Recently, we derived two different molecular clones corresponding to ecotropic nondefective genomes that were named GV-1.2 and GV-1.4. The induced leukemias were classified as myeloid based on morphological analysis of blood smears. In this study, we further characterized the two variants of the Graffi murine retrovirus, GV-1.2 and GV-1.4, in three different strains of mice. We show that the Graffi MuLV is a multipotent retrovirus capable of inducing both lymphoid (T- and B-cell) and nonlymphoid (myeloid, erythroid, megakaryocytic) leukemia. Many of these are very complex with concomitant expression of different hematopoietic lineages. Interestingly, a high percentage of megakaryocytic leukemias, a type of leukemia rarely observed with MuLVs, arise in the FVB/n strain of mice. The genetic backgrounds of the different strains of mice influence greatly the results. Furthermore, the enhancer region, different for GV-1.2 and GV-1.4, plays a pivotal role in the disease specificity: GV-1.2 induces more lymphoid leukemias, and GV-1.4 induces more nonlymphoid ones.


1989 ◽  
Vol 43 (6) ◽  
pp. 1112-1119 ◽  
Author(s):  
W. L. E. Vasmel ◽  
E. A. Matthews ◽  
C. P. M. Gillis ◽  
J. Nieland ◽  
E. A. Borst ◽  
...  

Virology ◽  
2006 ◽  
Vol 352 (2) ◽  
pp. 306-318 ◽  
Author(s):  
Shi Liang Ma ◽  
Annette Balle Sørensen ◽  
Sandra Kunder ◽  
Karina Dalsgaard Sørensen ◽  
Leticia Quintanilla-Martinez ◽  
...  

2001 ◽  
Vol 75 (23) ◽  
pp. 11907-11912 ◽  
Author(s):  
Javier Martı́n-Hernández ◽  
Annette Balle Sørensen ◽  
Finn Skou Pedersen

ABSTRACT Akv1-99, a variant of Akv murine leukemia virus, induces B-cell lymphomas with nearly 100% incidence and a mean latency period of 12 months after injection into newborn NMRI mice. PCR amplification and sequence analyses of DNA flanking integrated proviruses revealed proviral insertion into the N-ras/unr (upstream of N-ras) locus in 2 out of 13 B-cell lymphomas, both of which appeared clonal by Southern blotting analysis. These two tumors showed increased expression levels of N-ras by Northern blotting, as did a third tumor shown by reverse transcriptase PCR to have a nonclonal provirus integration located in the same area. However, no significant changes in expression were observed when using a specific probe for the unr gene. All proviruses were integrated in the same transcriptional orientation as unr and N-ras genes. By promoter insertion, the two Akv1-99 proviruses integrated between exon −1 and exon 1 of N-rasgave rise to two different spliced products, whereas the provirus integrated into unr used only an exon skipping pattern. The absence of mutations of the N-ras codons 12, 13, 18, and 61 suggests that activation of the proto-oncogene is exclusively due to overexpression by retroviral promoter insertion, and furthermore, Northern blot analyses indicate that the expression of unris unaffected by N-ras overexpression even in the case where the unr gene itself is the target of proviral insertion. Thus, altogether our findings indicate that overexpression of N-ras plays a role in development of murine leukemia virus-induced B-cell lymphomas, leaving the expression of the tightly linked unr gene unaltered.


1998 ◽  
Vol 72 (2) ◽  
pp. 1078-1084 ◽  
Author(s):  
C. R. Starkey ◽  
P. A. Lobelle-Rich ◽  
S. Granger ◽  
B. K. Brightman ◽  
H. Fan ◽  
...  

ABSTRACT A recombinant retrovirus, termed MoFe2-MuLV, was constructed in which the U3 region of T-lymphomagenic Moloney murine leukemia virus (Mo-MuLV) was replaced by that of FeLV-945, a provirus of unique long terminal repeat (LTR) structure identified only in non-T-cell, non-B-cell lymphomas of the domestic cat. The LTR of FeLV-945 is unusual in that it contains only a single copy of the transcriptional enhancer followed 25 bp downstream by a 21-bp sequence in triplicate in tandem. Infectivity of MoFe2-MuLV was demonstrated in vitro in SC-1 cells and in vivo in neonatal NIH-Swiss mice. Tumors occurred in MoFe2-MuLV-infected animals following a latency period of 4 to 10 months (average, 6 months). The results of Southern blot analysis of the T-cell receptor beta locus demonstrated that all tumors were lymphomas of T-cell origin. MoFe2-MuLV LTRs were amplified by PCR from tumor DNA and were characterized by nucleotide sequence analysis. LTRs from the tumors that occurred with relatively shorter latency predominantly retained the original MoFe2-MuLV sequence intact and unaltered. Tumors that occurred with relatively longer latency contained LTRs that also retained the 21-bp sequence triplication characteristic of the original virus but had acquired various duplications of enhancer sequences. The repeated identification of enhancer duplications in late-appearing tumors suggests that the duplication affords a selective advantage, although apparently not in the efficient induction of T-cell lymphoma. Proto-oncogenes known to be targets of insertional mutagenesis in the majority of Mo-MuLV-induced tumors or in feline non-T-cell, non-B-cell lymphomas were shown not to be rearranged in any tumor examined. Mink cell focus-inducing (MCF) proviral DNA was readily detectable in some, but not all, tumors. The presence or absence of MCF did not correlate with the kinetics of tumor induction. These studies indicate that the single-enhancer, triplication-containing FeLV LTR, typical of non-T-cell, non-B-cell lymphomas in cats, is competent in the induction of T-cell lymphoma in mice. The findings suggest that the mechanism of MoFe2-MuLV-mediated lymphomagenesis may differ from that of Mo-MuLV-mediated disease, considering the possible involvement of novel oncogenes and the variable presence of MCF recombinants.


Sign in / Sign up

Export Citation Format

Share Document