scholarly journals Adaptation state of the local-motion-pooling units determines the nature of the motion aftereffect to transparent motion

2012 ◽  
Vol 64 ◽  
pp. 23-25 ◽  
Author(s):  
Mark Edwards ◽  
Carlos R. Cassanello ◽  
Kanupriya Kalia
Perception ◽  
1996 ◽  
Vol 25 (1_suppl) ◽  
pp. 170-170
Author(s):  
N J Wade ◽  
V Pardieu ◽  
M T Swanston

The local motion adaptation at the basis of the motion aftereffect (MAE) can be expressed in a variety of ways, depending upon the structure of the test display (N J Wade, L Spillmann, M T Swanston Vision Research in press). This has been demonstrated with MAEs from induced motion: if adaptation is to two moving (Surround) gratings, an MAE is seen in the central grating if two gratings surround it, but in the flanking gratings when they are themselves surrounded in the test stimulus. We report two experiments in which the characteristics of the test display and of the local adaptation process have been examined. In experiment 1, five vertical gratings were presented during adaptation; the outermost and central gratings remained stationary and those flanking the centre moved laterally. The test display always consisted of three stationary gratings: either the central three or the lower three equivalent to the locations of the adaptation display. MAEs were only recorded in the Centre and not in the Surround, irrespective of whether the Centre or Surround had been exposed to motion during adaptation. MAEs in the Centre were in opposite directions, reflecting the influence of Surround adaptation. The influence of adapting motion in different directions was examined in experiment 2. The upper grating always received the same direction of motion during adaptation, and the lower grating was absent, stationary, or moving in the same or in the opposite direction. The results indicate that an MAE is visible in the upper grating only after differential adaptation between the upper and lower gratings.


2011 ◽  
Vol 11 (11) ◽  
pp. 702-702
Author(s):  
A. L. F. Lee ◽  
H. Lu

Perception ◽  
1994 ◽  
Vol 23 (10) ◽  
pp. 1181-1188 ◽  
Author(s):  
Frans A J Verstraten ◽  
Reinder Verlinde ◽  
R Eric Fredericksen ◽  
Wim A van de Grind

Under transparent motion conditions overlapping surfaces are perceived simultaneously, each with its own direction. The motion aftereffect (MAE) of transparent motion, however, is unidirectional and its direction is opposite to that of a sensitivity-weighted vector sum of both inducing vectors. Here we report a bidirectional and transparent MAE contingent on binocular disparity. Depth (from retinal disparity) was introduced between two patterns. A fixation dot was presented at zero disparity, that is, located between the two adaptation patterns. After adaptation to such a stimulus configuration testing was carried out with two stationary test patterns at the same depths as the preceding moving patterns. For opposite directions a clear transparent MAE was perceived. However, if the adaptation directions were orthogonal the chance of a transparent MAE being perceived decreased substantially. This was subject dependent. Some subjects perceived an orthogonal transparent MAE whereas others saw the negative vector sum—an integrated MAE. In addition the behaviour of the MAE when the distance in depth between adapting and test patterns was increased was investigated: it was found that the visibility of the MAE then decreased. Visibility is defined in this paper as: (i) the percentage of the trials in which MAEs are perceived and (ii) the average MAE duration. Both measures decreased with increasing distance. The results suggest that segregation and integration may be mediated by direction-tuned channels that interact with disparity-tuned channels.


2012 ◽  
Vol 23 (12) ◽  
pp. 1534-1541 ◽  
Author(s):  
Zhicheng Lin ◽  
Sheng He

The visual system is intelligent—it is capable of recovering a coherent surface from an incomplete one, a feat known as perceptual completion or filling in. Traditionally, it has been assumed that surface features are interpolated in a way that resembles the fragmented parts. Using displays featuring four circular apertures, we showed in the study reported here that a distinct completed feature (horizontal motion) arises from local ones (oblique motions)—we term this process emergent filling in. Adaptation to emergent filling-in motion generated a dynamic motion aftereffect that was not due to spreading of local motion from the isolated apertures. The filling-in motion aftereffect occurred in both modal and amodal completions, and it was modulated by selective attention. These findings highlight the importance of high-level interpolation processes in filling in and are consistent with the idea that during emergent filling in, the more cognitive-symbolic processes in later areas (e.g., the middle temporal visual area and the lateral occipital complex) provide important feedback signals to guide more isomorphic processes in earlier areas (V1 and V2).


2005 ◽  
Vol 45 (4) ◽  
pp. 403-412 ◽  
Author(s):  
David Alais ◽  
Frans A.J. Verstraten ◽  
David C. Burr

Perception ◽  
1997 ◽  
Vol 26 (1) ◽  
pp. 7-16 ◽  
Author(s):  
Hiroshi Ashida ◽  
Kenji Susami

The effect of adaptation to pure relative motion was investigated for the motion aftereffect (MAE) of linear translation motion. In experiment 1, MAE induced by adaptation in the surrounding area was tested. The relative motion signal significantly increased the magnitude of MAE while local MAE in the surrounds was not affected. In experiment 2, MAE observed in the same adapted area was examined while local adaptation was cancelled out. Substantial MAE was found only when the test stimuli included the surroundings, which is considered to be favourable for relative motion mechanisms. These results clearly indicate that MAE is induced by adaptation to pure relative motion as well as by local motion. MAE should be regarded as a composite phenomenon reflecting multiple sites of adaptation including the local and the relative motion levels. The results also provide evidence for the existence of independent detecting mechanisms for relative motion processing.


2010 ◽  
Vol 5 (8) ◽  
pp. 149-149
Author(s):  
W. Curran ◽  
C. P. Benton

Sign in / Sign up

Export Citation Format

Share Document