scholarly journals Early, local motion signals generate directional preferences in depth ordering of transparent motion

2015 ◽  
Vol 15 (12) ◽  
pp. 6
Author(s):  
Alexander Schütz ◽  
Pascal Mamassian
2010 ◽  
Vol 7 (9) ◽  
pp. 744-744
Author(s):  
R. Moreno-Bote ◽  
A. Shipiro ◽  
J. Rinzel ◽  
N. Rubin

2013 ◽  
Vol 24 (3) ◽  
pp. 175 ◽  
Author(s):  
Qian WANG ◽  
Jimin LIANG ◽  
Zejun HU

2020 ◽  
Vol 38 (5) ◽  
pp. 395-405
Author(s):  
Luca Battaglini ◽  
Federica Mena ◽  
Clara Casco

Background: To study motion perception, a stimulus consisting of a field of small, moving dots is often used. Generally, some of the dots coherently move in the same direction (signal) while the rest move randomly (noise). A percept of global coherent motion (CM) results when many different local motion signals are combined. CM computation is a complex process that requires the integrity of the middle-temporal area (MT/V5) and there is evidence that increasing the number of dots presented in the stimulus makes such computation more efficient. Objective: In this study, we explored whether anodal direct current stimulation (tDCS) over MT/V5 would increase individual performance in a CM task at a low signal-to-noise ratio (SNR, i.e. low percentage of coherent dots) and with a target consisting of a large number of moving dots (high dot numerosity, e.g. >250 dots) with respect to low dot numerosity (<60 dots), indicating that tDCS favour the integration of local motion signal into a single global percept (global motion). Method: Participants were asked to perform a CM detection task (two-interval forced-choice, 2IFC) while they received anodal, cathodal, or sham stimulation on three different days. Results: Our findings showed no effect of cathodal tDCS with respect to the sham condition. Instead, anodal tDCS improves performance, but mostly when dot numerosity is high (>400 dots) to promote efficient global motion processing. Conclusions: The present study suggests that tDCS may be used under appropriate stimulus conditions (low SNR and high dot numerosity) to boost the global motion processing efficiency, and may be useful to empower clinical protocols to treat visual deficits.


Author(s):  
Wangwang Zhu ◽  
Xi Zhang ◽  
Baixuan Zhao ◽  
Shiwei Peng ◽  
Pengfei Guo ◽  
...  

Sensors ◽  
2021 ◽  
Vol 21 (7) ◽  
pp. 2534
Author(s):  
Oualid Doukhi ◽  
Deok-Jin Lee

Autonomous navigation and collision avoidance missions represent a significant challenge for robotics systems as they generally operate in dynamic environments that require a high level of autonomy and flexible decision-making capabilities. This challenge becomes more applicable in micro aerial vehicles (MAVs) due to their limited size and computational power. This paper presents a novel approach for enabling a micro aerial vehicle system equipped with a laser range finder to autonomously navigate among obstacles and achieve a user-specified goal location in a GPS-denied environment, without the need for mapping or path planning. The proposed system uses an actor–critic-based reinforcement learning technique to train the aerial robot in a Gazebo simulator to perform a point-goal navigation task by directly mapping the noisy MAV’s state and laser scan measurements to continuous motion control. The obtained policy can perform collision-free flight in the real world while being trained entirely on a 3D simulator. Intensive simulations and real-time experiments were conducted and compared with a nonlinear model predictive control technique to show the generalization capabilities to new unseen environments, and robustness against localization noise. The obtained results demonstrate our system’s effectiveness in flying safely and reaching the desired points by planning smooth forward linear velocity and heading rates.


1714 ◽  
Vol 29 (349) ◽  
pp. 486-490 ◽  
Keyword(s):  

Of Plants in general we may first observe, that they are either Terrestrial, Amphibious , or Aquatick ; and so nearly do Vegetables agree with Animals in most points, except Local Motion and its Consequences, that from the Knowledge of the one we are reasonably led to the Discovery of the other.


Sign in / Sign up

Export Citation Format

Share Document