scholarly journals A normative dataset on human global stereopsis using the quick Disparity Sensitivity Function (qDSF)

2015 ◽  
Vol 113 ◽  
pp. 97-103 ◽  
Author(s):  
Alexandre Reynaud ◽  
Yi Gao ◽  
Robert F. Hess
Perception ◽  
1978 ◽  
Vol 7 (4) ◽  
pp. 423-429 ◽  
Author(s):  
John P Frisby ◽  
John E W Mayhew

Contrast thresholds for stereopsis from narrow-band-filtered random-dot stereograms were compared with contrast thresholds for simple detection of similar narrow-band noise. Centre frequencies of filters were in the range 2·5–15 cycles deg−1. It was found that the contrast sensitivity function for stereopsis is similar in shape to that for detection, suggesting that as far as contrast requirements are concerned the mechanisms of global stereopsis do not show a bias in sensitivity to any particular spatial frequency but instead require a constant level of suprathreshold contrast regardless of spatial frequency.


2009 ◽  
Vol 12 (5) ◽  
pp. 549-551 ◽  
Author(s):  
Renjie Li ◽  
Uri Polat ◽  
Walter Makous ◽  
Daphne Bavelier

2011 ◽  
Vol 51 (12) ◽  
pp. 2000-2016 ◽  
Author(s):  
A. S. Antipin ◽  
A. I. Golikov ◽  
E. V. Khoroshilova
Keyword(s):  

1996 ◽  
Vol 75 (1) ◽  
pp. 75-96 ◽  
Author(s):  
D. R. Irvine ◽  
R. Rajan ◽  
L. M. Aitkin

1. Interaural intensity differences (IIDs) provide the major cue to the azimuthal location of high-frequency narrowband sounds. In recent studies of the azimuthal sensitivity of high-frequency neurons in the primary auditory cortex (field AI) of the cat, a number of different types of azimuthal sensitivity have been described and the azimuthal sensitivity of many neurons was found to vary as a function of changes in stimulus intensity. The extent to which the shape and the intensity dependence of the azimuthal sensitivity of AI neurons reflects features of their IID sensitivity was investigated by obtaining data on IID sensitivity from a large sample of neurons with a characteristic frequency (CF) > 5.5 kHz in AI of anesthetized cats. IID sensitivity functions were classified in a manner that facilitated comparison with previously obtained data on azimuthal sensitivity, and the effects of changes in the base intensity at which IIDs were introduced were examined. 2. IID sensitivity functions for CF tonal stimuli were obtained at one or more intensities for a total of 294 neurons, in most cases by a method of generating IIDs that kept the average binaural intensity (ABI) of the stimuli at the two ears constant. In the standard ABI range at which a function was obtained for each unit, five types of IID sensitivity were distinguished. Contra-max neurons (50% of the sample) had maximum response (a peak or a plateau) at IIDs corresponding to contralateral azimuths, whereas ipsi-max neurons (17%) had the mirror-image form of sensitivity. Near-zero-max neurons (18%) had a clearly defined maximum response (peak) in the range of +/- 10 dB IID, whereas a small group of tough neurons (2%) had a restricted range of minimal responsiveness with near-maximal responses at IIDs on either side. A final 18% of AI neurons were classified as insensitive to IIDs. The proportions of neurons exhibiting the various types of sensitivity corresponded closely to the proportions found to exhibit corresponding types of azimuthal sensitivity in a previous study. 3. There was a strong correlation between a neuron's binaural interaction characteristics and the form of its IID sensitivity function. Thus, neurons excited by monaural stimulation of only one ear but with either inhibitory, facilitatory, or mixed facilitatory-inhibitory effects of stimulation of the other ear had predominantly contra-max IID sensitivity (if contralateral monaural stimulation was excitatory) or ipsi-max sensitivity (if ipsilateral monaural stimulation was excitatory). Neurons driven weakly or not at all by monaural stimulation but facilitated binaurally almost all exhibited near-zero-max IID sensitivity. The exception to this tight association between binaural input and IID sensitivity was provided by neurons excited by monaural stimulation of either ear (EE neurons). Although EE neurons have frequently been considered to be insensitive to IIDs, our data were in agreement with two recent reports indicating that they can exhibit various forms of IID sensitivity: only 23 of 75 EE neurons were classified as insensitive and the remainder exhibited diverse types of sensitivity. 4. IID sensitivity was examined at two or more intensities (3-5 in most cases) for 84 neurons. The form of the IID sensitivity function (defined in terms of both shape and position along the IID axis) was invariant with changes in ABI for only a small proportion of IID-sensitive neurons (approximately 15% if a strict criterion of invariance was employed), and for many of these neurons the spike counts associated with a given IID varied with ABI, particularly at near-threshold levels. When the patterns of variation in the form of IID sensitivity produced by changes in ABI were classified in a manner equivalent to that used previously to classify the effects of intensity on azimuthal sensitivity, there was a close correspondence between the effects of intensity on corresponding types of azimuthal and IID sensitivity


Sign in / Sign up

Export Citation Format

Share Document