scholarly journals Flexible face processing: Holistic processing of facial identity is modulated by task-irrelevant facial expression

2021 ◽  
Vol 178 ◽  
pp. 18-27
Author(s):  
Wei Chen ◽  
Olivia S. Cheung
2019 ◽  
Author(s):  
Nicolas Burra ◽  
Dirk Kerzel

The threat capture hypothesis states that threatening stimuli are automatically processed with higher priority than non-threatening stimuli, irrespective of the task. We evaluated the threat capture hypothesis with respect to the early perceptual stages of face processing. We focused on an electrophysiological marker of face processing (the lateralized N170) in response to neutral, happy, and angry facial expressions displayed in competition with a non-face stimulus (a house). We evaluated how effects of facial expression on the lateralized N170 were modulated by task demands. In one task, participants were required to identify the gender of the face, which made the face task-relevant and entailed structural encoding of the face stimulus. In another task, participants identified the location of a missing pixel in the fixation cross, which made the face task-irrelevant and placed it outside the focus of attention. When faces were relevant, the lateralized N170 to angry faces was enhanced compared to happy and neutral faces. When faces were irrelevant, facial expression had no effect. These results reveal the critical role of task demands on the preference for threatening faces, indicating that top-down, voluntary processing modulates the prioritization of threat.


2020 ◽  
Author(s):  
Joshua W Maxwell ◽  
Eric Ruthruff ◽  
michael joseph

Are facial expressions of emotion processed automatically? Some authors have not found this to be the case (Tomasik et al., 2009). Here we revisited the question with a novel experimental logic – the backward correspondence effect (BCE). In three dual-task studies, participants first categorized a sound (Task 1) and then indicated the location of a target face (Task 2). In Experiment 1, Task 2 required participants to search for one facial expression of emotion (angry or happy). We observed positive BCEs, indicating that facial expressions of emotion bypassed the central attentional bottleneck and thus were processed in a capacity-free, automatic manner. In Experiment 2, we replicated this effect but found that morphed emotional expressions (which were used by Tomasik) were not processed automatically. In Experiment 3, we observed similar BCEs for another type of face processing previously shown to be capacity-free – identification of familiar faces (Jung et al., 2013). We conclude that facial expressions of emotion are identified automatically when sufficiently unambiguous.


2008 ◽  
Vol 8 (3) ◽  
pp. 11 ◽  
Author(s):  
Christopher J. Fox ◽  
Ipek Oruç ◽  
Jason J. S. Barton

2007 ◽  
Vol 97 (2) ◽  
pp. 1671-1683 ◽  
Author(s):  
K. M. Gothard ◽  
F. P. Battaglia ◽  
C. A. Erickson ◽  
K. M. Spitler ◽  
D. G. Amaral

The amygdala is purported to play an important role in face processing, yet the specificity of its activation to face stimuli and the relative contribution of identity and expression to its activation are unknown. In the current study, neural activity in the amygdala was recorded as monkeys passively viewed images of monkey faces, human faces, and objects on a computer monitor. Comparable proportions of neurons responded selectively to images from each category. Neural responses to monkey faces were further examined to determine whether face identity or facial expression drove the face-selective responses. The majority of these neurons (64%) responded both to identity and facial expression, suggesting that these parameters are processed jointly in the amygdala. Large fractions of neurons, however, showed pure identity-selective or expression-selective responses. Neurons were selective for a particular facial expression by either increasing or decreasing their firing rate compared with the firing rates elicited by the other expressions. Responses to appeasing faces were often marked by significant decreases of firing rates, whereas responses to threatening faces were strongly associated with increased firing rate. Thus global activation in the amygdala might be larger to threatening faces than to neutral or appeasing faces.


2020 ◽  
Vol 725 ◽  
pp. 134911
Author(s):  
Sahoko Komatsu ◽  
Emi Yamada ◽  
Katsuya Ogata ◽  
Shizuka Horie ◽  
Yuji Hakoda ◽  
...  

2019 ◽  
Vol 31 (10) ◽  
pp. 1573-1588 ◽  
Author(s):  
Eelke de Vries ◽  
Daniel Baldauf

We recorded magnetoencephalography using a neural entrainment paradigm with compound face stimuli that allowed for entraining the processing of various parts of a face (eyes, mouth) as well as changes in facial identity. Our magnetic response image-guided magnetoencephalography analyses revealed that different subnodes of the human face processing network were entrained differentially according to their functional specialization. Whereas the occipital face area was most responsive to the rate at which face parts (e.g., the mouth) changed, and face patches in the STS were mostly entrained by rhythmic changes in the eye region, the fusiform face area was the only subregion that was strongly entrained by the rhythmic changes in facial identity. Furthermore, top–down attention to the mouth, eyes, or identity of the face selectively modulated the neural processing in the respective area (i.e., occipital face area, STS, or fusiform face area), resembling behavioral cue validity effects observed in the participants' RT and detection rate data. Our results show the attentional weighting of the visual processing of different aspects and dimensions of a single face object, at various stages of the involved visual processing hierarchy.


Sign in / Sign up

Export Citation Format

Share Document