Large Eddy Simulation of complex sidearms subject to solar radiation and surface cooling

2013 ◽  
Vol 47 (14) ◽  
pp. 4918-4927 ◽  
Author(s):  
Karl A. Dittko ◽  
Michael P. Kirkpatrick ◽  
Steven W. Armfield
Author(s):  
B.J Devenish ◽  
J.M Edwards

The explosion at the Buncefield oil depot in Hertfordshire, UK on 11 December 2005 produced the largest fire in Europe since the Second World War. The magnitude of the fire and the scale of the resulting plume thus present a stringent test of any mathematical model of buoyant plumes. A large-eddy simulation of the Boussinesq equations with suitable initial conditions is shown to reproduce the characteristics of the observed plume; both the height of the plume above the source and the direction of the downwind spread agree with the observations. This supports the use of the Boussinesq assumption, even for such a powerful plume as the one generated by the Buncefield fire. The presence of a realistic water vapour profile does not lead to significant additional latent heating of the plume, but does lead to a small increase in the final rise height of the plume due to the increased buoyancy provided by the water vapour. Our simulations include the interaction of radiation with the aerosol in the plume, and reproduce the observed optical thickness of the plume and the reduction of solar radiation reaching the ground. Far downwind of the source, solar radiation is shown to play a role in lofting the laterally spreading plume, but the manner in which it does so depends on the aerosol concentration. In the case of high aerosol concentration, the thickness of the plume increases; the incoming solar radiation is absorbed over such a small depth that only the top of the plume is lofted upwards and the level of maximum concentration remains almost unchanged relative to the case with no radiation. When the aerosol concentration is low, the whole plume is heated by the incoming solar radiation and the lofting is more coherent, with the result that the level of maximum concentration increases relative to the case with no radiation, but the thickness of the plume increases only slightly.


2009 ◽  
Vol 66 (10) ◽  
pp. 3147-3164 ◽  
Author(s):  
Craig M. Smith ◽  
Eric D. Skyllingstad

Abstract Interactions between a turbulent boundary layer and nonlinear mountain waves are explored using a large-eddy simulation model. Simulations of a self-induced critical layer, which develop a stagnation layer and a strong leeside surface jet, are considered. Over time, wave breaking in the stagnation region forces strong turbulence that influences the formation and structure of downstream leeside rotors. Shear production is an important source of turbulence in the stagnation zone and along the interface between the stagnation zone and surface jet, as well as along the rotor edges. Buoyancy perturbations act as a source of turbulence in the stagnation zone but are shown to inhibit turbulence generation on the edges of the stagnation zone. Surface heating is shown to have a strong influence on the strength of downslope winds and the formation of leeside rotors. In cases with no heating, a series of rotor circulations develops, capped by a region of increased winds. Weak heating disrupts this system and limits rotor formation at the base of the downslope jet. Strong heating has a much larger impact through a deepening of the upstream boundary layer and an overall decrease in the downslope winds. Rotors in this case are nonexistent. In contrast to the cases with surface warming, negative surface fluxes generate stronger downslope winds and intensified rotors due to turbulent interactions with an elevated stratified jet capping the rotors. Overall, the results suggest that for nonlinear wave systems over mountains higher than the boundary layer, strong downslope winds and rotors are favored in late afternoon and evening when surface cooling enhances the stability of the low-level air.


2017 ◽  
Vol 74 (12) ◽  
pp. 4047-4073 ◽  
Author(s):  
Christophe Brun ◽  
Sébastien Blein ◽  
Jean-Pierre Chollet

Abstract Large-eddy simulation is performed to study a katabatic jet along a convexly curved slope with a maximum angle of about 35.5°. The design of this numerical simulation of turbulent shear flow is discussed, and a qualitative assessment of the method is proposed. The katabatic flow is artificially generated by ground surface cooling, and a stable atmospheric boundary layer with constant stratification is considered as a reference state. A quantitative statistical analysis is used to describe the present turbulent flow, with a focus on the outer-layer shear of the katabatic jet, which extends about 50 m above the jet maximum. The Prandtl model for a katabatic jet is applied to the present results, and revisited versions of the model found in the literature are discussed, with an emphasis on specific momentum and turbulent heat diffusion. The vertical and downslope variability of the turbulent kinetic energy budget is also discussed, and it is shown that advection and production contributions in the downslope direction are far from negligible in katabatic flows along curved slopes. A specific effect that the convex curvature has on the katabatic jet is one of centrifugal deceleration and an increase of the flow’s turbulent production and turbulent intensity in the outer-layer shear. A strong thickening of the outer layer is also observed.


2014 ◽  
Vol 50 ◽  
pp. 209-224 ◽  
Author(s):  
R. Walker ◽  
A.E. Tejada-Martínez ◽  
G. Martinat ◽  
C.E. Grosch

Sign in / Sign up

Export Citation Format

Share Document