Large-eddy simulation of the plume generated by the fire at the Buncefield oil depot in December 2005

Author(s):  
B.J Devenish ◽  
J.M Edwards

The explosion at the Buncefield oil depot in Hertfordshire, UK on 11 December 2005 produced the largest fire in Europe since the Second World War. The magnitude of the fire and the scale of the resulting plume thus present a stringent test of any mathematical model of buoyant plumes. A large-eddy simulation of the Boussinesq equations with suitable initial conditions is shown to reproduce the characteristics of the observed plume; both the height of the plume above the source and the direction of the downwind spread agree with the observations. This supports the use of the Boussinesq assumption, even for such a powerful plume as the one generated by the Buncefield fire. The presence of a realistic water vapour profile does not lead to significant additional latent heating of the plume, but does lead to a small increase in the final rise height of the plume due to the increased buoyancy provided by the water vapour. Our simulations include the interaction of radiation with the aerosol in the plume, and reproduce the observed optical thickness of the plume and the reduction of solar radiation reaching the ground. Far downwind of the source, solar radiation is shown to play a role in lofting the laterally spreading plume, but the manner in which it does so depends on the aerosol concentration. In the case of high aerosol concentration, the thickness of the plume increases; the incoming solar radiation is absorbed over such a small depth that only the top of the plume is lofted upwards and the level of maximum concentration remains almost unchanged relative to the case with no radiation. When the aerosol concentration is low, the whole plume is heated by the incoming solar radiation and the lofting is more coherent, with the result that the level of maximum concentration increases relative to the case with no radiation, but the thickness of the plume increases only slightly.

Author(s):  
F. F. Grinstein ◽  
A. A. Gowardhan ◽  
J. R. Ristorcelli

Under-resolved computer simulations are typically unavoidable in practical turbulent flow applications exhibiting extreme geometrical complexity and a broad range of length and time scales. An important unsettled issue is whether filtered-out and subgrid spatial scales can significantly alter the evolution of resolved larger scales of motion and practical flow integral measures. Predictability issues in implicit large eddy simulation of under-resolved mixing of material scalars driven by under-resolved velocity fields and initial conditions are discussed in the context of shock-driven turbulent mixing. The particular focus is on effects of resolved spectral content and interfacial morphology of initial conditions on transitional and late-time turbulent mixing in the fundamental planar shock-tube configuration.


2005 ◽  
Vol 44 (5) ◽  
pp. 571-590 ◽  
Author(s):  
Ronald Calhoun ◽  
Frank Gouveia ◽  
Joseph Shinn ◽  
Stevens Chan ◽  
Dave Stevens ◽  
...  

Abstract A field program to study atmospheric releases around a complex building was performed in the summers of 1999 and 2000. The focus of this paper is to compare field data with a large-eddy simulation (LES) code to assess the ability of the LES approach to yield additional insight into atmospheric release scenarios. In particular, transient aspects of the velocity and concentration signals are studied. The simulation utilized the finite-element method with a high-fidelity representation of the complex building. Trees were represented with a canopy term in the momentum equation. Inflow and outflow conditions were used. The upwind velocity was constructed from a logarithmic law fitted to velocities obtained on two levels from a tower equipped with a 2D sonic anemometer. A number of different kinds of comparisons of the transient velocity and concentration signals are presented—direct signal versus time, spectral, Reynolds stresses, turbulent kinetic energy signals, and autocorrelations. It is concluded that the LES approach does provide additional insight, but the authors argue that the proper use of LES should include consideration of cost and may require an increased connection to field sensors; that is, higher-resolution boundary and initial conditions need to be provided to realize the full potential of LES.


1994 ◽  
Vol 116 (4) ◽  
pp. 677-684 ◽  
Author(s):  
M. D. Su ◽  
R. Friedrich

Large eddy simulations have been performed in straight ducts with square cross section at a global Reynolds number of 49,000 in order to predict the complicated mean and instantaneous flow involving turbulence-driven secondary motion. Isotropic grid systems were used with spatial resolutions of 256 * 642. The secondary flow not only turned out to develop extremely slowly from its initial conditions but also to require fairly high resolution. The obtained statistical results are compared with measurements. These results show that the large eddy simulation (LES) is a powerful approach to simulate the complex turbulence flow with high Reynolds number. Streaklines of fluid particles in the duct show the secondary flow clearly. The database obtained with LES is used to examine a statistical turbulence model and describe the turbulent vortex structure in the fully developed turbulent flow in a straight duct.


2011 ◽  
Vol 121-126 ◽  
pp. 3657-3661
Author(s):  
Dun Zhang ◽  
Yuan Zheng ◽  
Ying Zhao ◽  
Jian Jun Huang

Numerical simulation of three-dimensional transient turbulent flow in the whole flow passage of a Francis turbine were based upon the large eddy simulation(LES) technique on Smargorinsky model and sliding mesh technology. The steady flow data simulated with the standard k-εmodel was used as the initial conditions for the unsteady simulation. The results show that LES can do well transient turbulent flow simulation in a Francis turbine with complex geometry. The computational method provides some reference for exploring the mechanism of eddy formation in a complex turbulent of hydraulic machinery.


Author(s):  
David L. Youngs

Rayleigh–Taylor (RT) instability occurs when a dense fluid rests on top of a light fluid in a gravitational field. It also occurs in an equivalent situation (in the absence of gravity) when an interface between fluids of different density is accelerated by a pressure gradient, e.g. in inertial confinement fusion implosions. Engineering models (Reynolds-averaged Navier–Stokes models) are needed to represent the effect of mixing in complex applications. However, large eddy simulation (LES) currently makes an essential contribution to understanding the mixing process and calibration or validation of the engineering models. In this paper, three cases are used to illustrate the current role of LES: (i) mixing at a plane boundary, (ii) break-up of a layer of dense fluid due to RT instability, and (iii) mixing in a simple spherical implosion. A monotone integrated LES approach is preferred because of the need to treat discontinuities in the flow, i.e. the initial density discontinuities or shock waves. Of particular interest is the influence of initial conditions and how this needs to be allowed for in engineering modelling. It is argued that loss of memory of the initial conditions is unlikely to occur in practical applications.


2013 ◽  
Vol 47 (14) ◽  
pp. 4918-4927 ◽  
Author(s):  
Karl A. Dittko ◽  
Michael P. Kirkpatrick ◽  
Steven W. Armfield

Sign in / Sign up

Export Citation Format

Share Document