Quantifying Hemodynamic Changes in Moyamoya Disease Based on Two-Dimensional Cine Phase-Contrast Magnetic Resonance Imaging and Computational Fluid Dynamics

2018 ◽  
Vol 120 ◽  
pp. e1301-e1309 ◽  
Author(s):  
Wenbo Sun ◽  
Zhao Ruan ◽  
Xuan Dai ◽  
Sirui Li ◽  
Shuo Li ◽  
...  
Neurosurgery ◽  
2006 ◽  
Vol 59 (2) ◽  
pp. E429-E430 ◽  
Author(s):  
Gabriel Acevedo-Bolton ◽  
Liang-Der Jou ◽  
Bradley P. Dispensa ◽  
Michael T. Lawton ◽  
Randall T. Higashida ◽  
...  

Abstract OBJECTIVE: The goal of this study was to use phase-contrast magnetic resonance imaging and computational fluid dynamics to estimate the hemodynamic outcome that might result from different interventional options for treating a patient with a giant fusiform aneurysm. METHODS: We followed a group of patients with giant intracranial aneurysms who have no clear surgical options. One patient demonstrated dramatic aneurysm growth and was selected for further analysis. The aneurysm geometry and input and output flow conditions were measured with contrast-enhanced magnetic resonance angiography and phase-contrast magnetic resonance imaging. The data was imported into a computational fluid dynamics program and the velocity fields and wall shear stress distributions were calculated for the presenting physiological condition and for cases in which the opposing vertebral arteries were either occluded or opened. These models were validated with in vitro flow experiments using a geometrically exact silicone flow phantom. RESULTS: Simulation indicated that altering the flow ratio in the two vertebrals would deflect the main blood jet into the aneurysm belly, and that this would likely reduce the extent of the region of low wall shear stress in the growth zone. CONCLUSIONS: Computational fluid dynamics flow simulations in a complex patient-specific aneurysm geometry were validated by in vivo and in vitro phase-contrast magnetic resonance imaging, and were shown to be useful in modeling the likely hemodynamic impact of interventional treatment of the aneurysm.


2020 ◽  
Vol 14 (4) ◽  
pp. 7609-7621
Author(s):  
Mohd Azrul Hisham Mohd Adib ◽  
Lim Sheh Hong ◽  
Mohd Shafie Abdullah ◽  
Radhiana Hassan ◽  
Shigeo Wada

Nowadays, the knowledge of precise blood flow patterns in human blood vessels, especially focusing on Carotid Bifurcations Artery (CBA) area by using computational and modern techniques are very important to develop our understanding regarding to human diseases for both essential research and clinical treatment. This paper tends to discuss the progress regarding to the integration between Phase Contrast Magnetic Resonance Imaging (PC-MRI) and Computational Fluid Dynamics (CFD), specifically to the human diseases. We technically define the model geometry reconstruction, review both PC-MRI and CFD methods to create mesh models, obtain boundary conditions, define the governing equations in CFD, define the material properties, and assumptions used in running the CFD simulations. Detailed information on PC-MRI and CFD is provided in tables, such as the MRI setup, software used, CFD model setup, measurement parameter, and summary of the result contribution from each reviewed article. Numerous fusions between PC-MRI and CFD are specified by summarizing the investigation carried out by significant group’s research, reviewing the important outcomes, and discussing the techniques, drawbacks and possibilities for further study. We hope that this perspective analysis will encourage a fusion of PC-MRI and CFD research contributing to continuous advancement of human health with close cooperation and collaboration among clinicians and engineers.


2014 ◽  
Vol 136 (4) ◽  
Author(s):  
Philipp Berg ◽  
Daniel Stucht ◽  
Gábor Janiga ◽  
Oliver Beuing ◽  
Oliver Speck ◽  
...  

Computational fluid dynamics (CFD) opens up multiple opportunities to investigate the hemodynamics of the human vascular system. However, due to numerous assumptions the acceptance of CFD among physicians is still limited in practice and validation through comparison is mandatory. Time-dependent quantitative phase-contrast magnetic resonance imaging PC-MRI measurements in a healthy volunteer and two intracranial aneurysms were carried out at 3 and 7 Tesla. Based on the acquired images, three-dimensional (3D) models of the aneurysms were reconstructed and used for the numerical simulations. Flow information from the MR measurements were applied as boundary conditions. The four-dimensional (4D) velocity fields obtained by CFD and MRI were qualitatively as well as quantitatively compared including cut planes and vector analyses. For all cases a high similarity of the velocity patterns was observed. Additionally, the quantitative analysis revealed a good agreement between CFD and MRI. Deviations were caused by minor differences between the reconstructed vessel models and the actual lumen. The comparisons between diastole and systole indicate that relative differences between MRI and CFD are intensified with increasing velocity. The findings of this study lead to the conclusion that CFD and MRI agree well in predicting intracranial velocities when realistic geometries and boundary conditions are provided. Due to the considerably higher temporal and spatial resolution of CFD compared to MRI, complex flow patterns can be further investigated in order to evaluate their role with respect to aneurysm formation or rupture. Nevertheless, special care is required regarding the vessel reconstruction since the geometry has a major impact on the subsequent numerical results.


1999 ◽  
Vol 121 (6) ◽  
pp. 650-656 ◽  
Author(s):  
F. T. Sheehan ◽  
F. E. Zajac ◽  
J. E. Drace

Improper patellar tracking is often considered to be the cause of patellar-femoral pain. Unfortunately, our knowledge of patellar-femoral-tibial (knee) joint kinematics is severely limited due to a lack of three-dimensional, noninvasive, in vivo measurement techniques. This study presents the first large-scale, dynamic, three-dimensional, noninvasive, in vivo study of nonimpaired knee joint kinematics during volitional leg extensions. Cine-phase contrast magnetic resonance imaging was used to measure the velocity profiles of the patella, femur, and tibia in 18 unimpaired knees during leg extensions, resisted by a 34 N weight. Bone displacements were calculated through integration and then converted into three-dimensional orientation angles. We found that the patella displaced laterally, superiorly, and anteriorly as the knee extended. Further, patellar flexion lagged knee flexion, patellar tilt was variable, and patellar rotation was fairly constant throughout extension.


Sign in / Sign up

Export Citation Format

Share Document