scholarly journals Determining structures in a native environment using single-particle cryo-electron microscopy images

2021 ◽  
pp. 100166
Author(s):  
Jing Cheng ◽  
Bufan Li ◽  
Long Si ◽  
Xinzheng Zhang
2020 ◽  
Vol 3 (1) ◽  
Author(s):  
Szu-Chi Chung ◽  
Hsin-Hung Lin ◽  
Po-Yao Niu ◽  
Shih-Hsin Huang ◽  
I-Ping Tu ◽  
...  

Abstract2D classification plays a pivotal role in analyzing single particle cryo-electron microscopy images. Here, we introduce a simple and loss-less pre-processor that incorporates a fast dimension-reduction (2SDR) de-noiser to enhance 2D classification. By implementing this 2SDR pre-processor prior to a representative classification algorithm like RELION and ISAC, we compare the performances with and without the pre-processor. Tests on multiple cryo-EM experimental datasets show the pre-processor can make classification faster, improve yield of good particles and increase the number of class-average images to generate better initial models. Testing on the nanodisc-embedded TRPV1 dataset with high heterogeneity using a 3D reconstruction workflow with an initial model from class-average images highlights the pre-processor improves the final resolution to 2.82 Å, close to 0.9 Nyquist. Those findings and analyses suggest the 2SDR pre-processor, of minimal cost, is widely applicable for boosting 2D classification, while its generalization to accommodate neural network de-noisers is envisioned.


Science ◽  
2018 ◽  
Vol 361 (6405) ◽  
pp. 876-880 ◽  
Author(s):  
Yifan Cheng

Cryo–electron microscopy, or simply cryo-EM, refers mainly to three very different yet closely related techniques: electron crystallography, single-particle cryo-EM, and electron cryotomography. In the past few years, single-particle cryo-EM in particular has triggered a revolution in structural biology and has become a newly dominant discipline. This Review examines the fascinating story of its start and evolution over the past 40-plus years, delves into how and why the recent technological advances have been so groundbreaking, and briefly considers where the technique may be headed in the future.


2020 ◽  
Author(s):  
Jing Cheng ◽  
Bufan Li ◽  
Long Si ◽  
Xinzheng Zhang

AbstractCryo-electron microscopy (cryo-EM) tomography is a powerful tool for in situ structure determination. However, this method requires the acquisition of tilt series, and its time consuming throughput of acquiring tilt series severely slows determination of in situ structures. By treating the electron densities of non-target protein as non-Gaussian distributed noise, we developed a new target function that greatly improves the efficiency of the recognition of the target protein in a single cryo-EM image without acquiring tilt series. Moreover, we developed a sorting function that effectively eliminates the false positive detection, which not only improves the resolution during the subsequent structure refinement procedure but also allows using homolog proteins as models to recognize the target protein. Together, we developed an in situ single particle analysis (isSPA) method. Our isSPA method was successfully applied to solve structures of glycoproteins on the surface of a non-icosahedral virus and Rubisco inside the carboxysome. The cryo-EM data from both samples were collected within 24 hours, thus allowing fast and simple structural determination in situ.


2017 ◽  
Vol 8 (1) ◽  
Author(s):  
Linda E. Franken ◽  
Gert T. Oostergetel ◽  
Tjaard Pijning ◽  
Pranav Puri ◽  
Valentina Arkhipova ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document