scholarly journals XACT-seq: A photocrosslinking-based technique for detection of the RNA polymerase active-center position relative to DNA in Escherichia coli

2021 ◽  
Vol 2 (4) ◽  
pp. 100858
Author(s):  
Chirangini Pukhrambam ◽  
Irina O. Vvedenskaya ◽  
Bryce E. Nickels
1994 ◽  
Vol 269 (33) ◽  
pp. 20826-20828 ◽  
Author(s):  
K. Severinov ◽  
D. Fenyö ◽  
E. Severinova ◽  
A. Mustaev ◽  
B.T. Chait ◽  
...  

1991 ◽  
Vol 266 (35) ◽  
pp. 23927-23931
Author(s):  
A. Mustaev ◽  
M. Kashlev ◽  
J.Y. Lee ◽  
A. Polyakov ◽  
A. Lebedev ◽  
...  

Author(s):  
Chengyuan Wang ◽  
Vadim Molodtsov ◽  
Emre Firlar ◽  
Jason T. Kaelber ◽  
Gregor Blaha ◽  
...  

AbstractIn bacteria, transcription and translation are coupled processes, in which movement of RNA polymerase (RNAP) synthesizing mRNA is coordinated with movement of the first ribosome translating mRNA. Coupling is modulated by the transcription factors NusG--which is thought to bridge RNAP and ribosome--and NusA. Here, we report cryo-EM structures of Escherichia coli transcription-translation complexes (TTCs) containing different-length mRNA spacers between RNAP and the ribosome active-center P-site. Structures of TTCs containing short spacers show a state incompatible with NusG bridging and NusA binding (TTC-A; previously termed “expressome”). Structures of TTCs containing longer spacers reveal a new state compatible with NusG bridging and NusA binding (TTC-B) and reveal how NusG bridges and NusA binds. We propose that TTC-B mediates NusG- and NusA-dependent transcription-translation coupling.One Sentence SummaryCryo-EM defines states that mediate NusG- and NusA-dependent transcription-translation coupling in bacteria


Science ◽  
2020 ◽  
Vol 369 (6509) ◽  
pp. 1359-1365 ◽  
Author(s):  
Chengyuan Wang ◽  
Vadim Molodtsov ◽  
Emre Firlar ◽  
Jason T. Kaelber ◽  
Gregor Blaha ◽  
...  

In bacteria, transcription and translation are coupled processes in which the movement of RNA polymerase (RNAP)–synthesizing messenger RNA (mRNA) is coordinated with the movement of the first ribosome-translating mRNA. Coupling is modulated by the transcription factors NusG (which is thought to bridge RNAP and the ribosome) and NusA. Here, we report cryo–electron microscopy structures of Escherichia coli transcription-translation complexes (TTCs) containing different-length mRNA spacers between RNAP and the ribosome active-center P site. Structures of TTCs containing short spacers show a state incompatible with NusG bridging and NusA binding (TTC-A, previously termed “expressome”). Structures of TTCs containing longer spacers reveal a new state compatible with NusG bridging and NusA binding (TTC-B) and reveal how NusG bridges and NusA binds. We propose that TTC-B mediates NusG- and NusA-dependent transcription-translation coupling.


Sign in / Sign up

Export Citation Format

Share Document