conserved region
Recently Published Documents


TOTAL DOCUMENTS

470
(FIVE YEARS 39)

H-INDEX

51
(FIVE YEARS 5)

2021 ◽  
Author(s):  
Nariko Ikemura ◽  
Atsushi Hoshino ◽  
Yusuke Higuchi ◽  
Shunta Taminishi ◽  
Tohru Inaba ◽  
...  

The novel SARS-CoV-2 variant, Omicron (B.1.1.529) contains about 30 mutations in the spike protein and the numerous mutations raise the concern of escape from vaccine, convalescent sera and therapeutic drugs. Here we analyze the alteration of their neutralizing titer with Omicron pseudovirus. Sera of 3 months after double BNT162b2 vaccination exhibite ~27-fold lower neutralization titers against Omicron than D614G mutation. Neutralization titer is also reduced in convalescent sera from Alpha and Delta patients. However, some Delta patients have relatively preserved neutralization activity up to the level of 3-month double BNT162b2 vaccination. Omicron escapes from the cocktail of imdevimab and casirivimab, whereas sotrovimab that targets the conserved region to prevent viral escape is effective to Omicron similarly to the original SARS-CoV-2. The ACE2 decoy is another modality that neutralize the virus independently of mutational escape and Omicron is also sensitive to the engineered ACE2.


Plant Disease ◽  
2021 ◽  
Author(s):  
Zhibin Liang ◽  
Huidi Liu ◽  
Zeling Xu ◽  
Lian-hui Zhang

Olecranon honey peach (Prunus persica L.) is a popular fruit tree cultivated in Guangdong Province of China. Due to its excellent economic values and popularity, it has recently been widely adopted and planted in several other southern Provinces and Autonomous Region in China, including Yunnan, Hunan, Jiangxi, Guizhou, and Guangxi. In Lianping County of Guangdong Province alone, the annual peach fruit production was about 78,800 tonnes (Xie et al. 2017). In July 2021, peach fruits showing soft rot symptoms were collected from an olecranon honey peach plantation in Lechang, Guangdong, China. Symptoms included tissue disintegration with bacterial oozes and rotting smells. To isolate the causal agent of soft rot in the peach fruits, the bacterial oozes from various rotted fruits were streaked on the modified YEB agar plate (Huang et al. 2021), and 21 bacterial colonies were selected for PCR amplification using the primers targeting the conserved region of 16S rDNA gene (Wei et al. 2020). A blastN analysis of the DNA sequences of the obtained PCR fragments in NCBI website indicated that 17 isolates named as ZL strains were potential bacterial species of Pectobacterium with about 99% similarity (Genbank accession number of ZL1: OK189602) to Pectobacterium aroidearum SCRI 109T (Genbank accession number: NR_159926). Three of them (ZL1, ZL2 and ZL3) were selected for assay of pathogenicity. The bacterial suspensions (10 μl, 1×106 CFU/ml) of strains ZL1, ZL2 and ZL3 were injected into olecranon honey peach fruits by using a syringe. A portion of peach fruits were similarly injected with sterile distilled water as the negative control. After 18 h incubation at 25 °C, the typical symptom of soft rot, i.e., tissue decay, became visible on the peach fruits inoculated with the bacterial suspensions. After inoculation for 42 h, bacterial oozes were exuded from rotting tissues. Peach fruits without injuries were also sprayed with the bacterial suspensions under the same conditions, but decay symptoms were not observed, suggesting that the bacterial infection needs the wounding or injuries. To fulfill the Koch’s postulates, bacterial colonies were re-isolated from bacterial oozes, and their conserved region of 16S rDNA fragments were amplified and sequenced. Bioinformatics analysis of the DNA sequence data confirmed that all the isolated colonies were Pectobacterium strains. Using the Biolog Gen III system, the representative strain ZL1 was identified as Pectobacterium (SIM 0.56). Transmission electron microscopy analysis showed that the bacterial cells of strain ZL1 were rod-shaped with peripheral flagella. To further determine the species of ZL strains, eight housekeeping genes (acnA, gapA, icd, mdh, mtlD, pgi, proA and rpoS) were analyzed by the methods described previously (Nabhan et al. 2013). The amplified DNA sequences analyzed by the blastN program in NCBI showed that the sequences of eight housekeeping genes from strains ZL1, ZL2 and ZL3 were identical to each other (Genbank accession number: OK274248 to OK274255), and most of the gene sequences shared over 99% similarity to their counterparts in P. aroidearum L6 (Genbank accession number: NZ_CP065044) (Xu et al. 2021), except that the acnA and proA genes showed about 98% and 96% similarity respectively to the corresponding genes of P. aroidearum L6. In addition, the multi-locus sequence analysis (MLSA) using DNA sequences of above eight housekeeping genes showed that ZL strains were grouped with other P. aroidearum strains. Taken together, the results of molecular and biochemical assays confirmed that ZL strains isolated from olecranon honey peach fruits were P. aroidearum. To our knowledge, this is the first report of P. aroidearum causing soft rot disease in olecranon honey peach in China. P. aroidearum is a relatively newly described soft rot pathogen (Nabhan et al. 2013). More recently, the pathogen was found causing soft rot infections in lettuce, Chinese cabbage, pepper (Capsicum annuum) fruits, konjac, carrot and Syngonium podophyllum (Barroso et al. 2019; Moraes et al. 2020; Sun et al. 2019; Tang et al. 2020; Xu et al. 2021). The results of this study add a new plant species to the host range of P. aroidearum.


2021 ◽  
Author(s):  
Valentina Yurina ◽  
Oktavia Rahayu Adianingsih ◽  
Nashi Widodo

Abstract Background: The COVID-19 pandemic began at the end of 2019 in Wuhan, China, and has spread throughout the world until mid-2021. Thus far, no specific therapy has been found for the coronavirus family. Vaccination still becomes the most effective prevention of pathogenic infections, including viral infections. However, little data show that this vaccination can protect against SARS-CoV-2 virus for a long time. Thus, revaccination needs to be regularly carried out to prevent the occurrence of COVID-19. Vaccination by injection is invasive, and it becomes one of the reasons people refuse to get revaccinated. Therefore, we developed a less invasive vaccine based on oral or nasal administration. The gene encoding the high conserved region (HCR) spike protein was inserted into pNZ8149 and expressed in L. lactis NZ3900. Results: The results of nasal and oral administration in experimental animals showed that L. lactis carrying the HCR gene could induce a humoral immune response, as indicated by an increasing IgG and IgA against SARS-CoV-2 (IgG/IgA-SARS-CoV-2) levels and the lymph cell population after nasal and oral vaccination in mice (p<0.05). Conclusion: This study shows promising results that can be developed into a less invasive alternative to nasal and oral vaccination.


2021 ◽  
Author(s):  
Scott V. Dindot ◽  
Sarah Christian ◽  
William J. Murphy ◽  
Allyson Berent ◽  
Jennifer Panagoulias ◽  
...  

Angelman syndrome is a devastating neurogenetic disorder for which there is currently no effective treatment. It is caused by mutations or epimutations affecting the expression or function of the maternally inherited allele of the ubiquitin-protein ligase E3A (UBE3A) gene. The paternal UBE3A allele is imprinted in neurons of the central nervous system (CNS) by the UBE3A antisense (UBE3A-AS) transcript, which represents the distal end of the SNHG14 transcription unit. Reactivating the expression of the paternal UBE3A allele in the CNS has long been pursued as a therapeutic option for Angelman syndrome. Here, we designed and optimized antisense oligonucleotides (ASO) targeting an evolutionarily conserved region demarcating the start of the human UBE3A-AS transcript and show that ASOs targeting this region can reverse imprinting of UBE3A in cultured Angelman syndrome neurons and throughout the CNS of a non-human primate model. Findings from this study advanced the first investigational molecular therapy for Angelman syndrome into clinical development (ClinicalTrials.gov, NCT04259281).


2021 ◽  
Vol 10 (1) ◽  
pp. 06-13
Author(s):  
Viol Dhea Kharisma ◽  
Arif Nur Muhammad Ansori ◽  
Gabrielle Ann Villar Posa ◽  
Wahyu Choirur Rizky ◽  
Sofy Permana ◽  
...  

Acquired immune deficiency syndrome (AIDS) has been identified from US patients since 1981. AIDS is caused by infection with the human immunodeficiency virus type 1 (HIV-1) which is a retrovirus. HIV-1 gp120 can be recognized by the immune system because it is located outside the virion. The conserved region is identified in gp120, and it is recognized by an immune cell which then initiates specific immune responses, viral mutation escape, and increase vaccine protection coverage, a benefit derived from the conserved region-based vaccine design. However, previous researchers have little knowledge on this conserved region as a target for vaccine design. This paper explains how the conserved region of gp120 HIV-1 is a major target for vaccine design through a bioinformatics approach. The conserved region from gp120 was explored as a vaccine design target with a bioinformatics tool that consists of B-cell epitope mapping, vaccine properties, molecular docking, and dynamic simulation. The peptide vaccine candidate of B5 with the gp120 HIV-1 conserved region was found to provoke B-cell activation through a direct pathway, produce specific antibody, and increase protection from multi-strain viral infection.


2021 ◽  
Vol 12 ◽  
Author(s):  
Jorge Martínez ◽  
Ander Nevado ◽  
Ester Suñén ◽  
Marta Gabriel ◽  
Ainara Vélez-del-Burgo ◽  
...  

The aim of this work was to study the value of the main allergen Asp n 3 of Aspergillus niger as a molecular marker of allergenicity and pathogenicity with the potential to be used in the identification of A. niger as a contaminant and cause of spoilage of Mangifera indica. Real-time polymerase chain reaction (RT-PCR) was used for the amplification of Asp n 3 gene. Two pairs of primers were designed: one for the amplification of the entire sequence and another one for the amplification of the most conserved region of this peroxisomal protein. The presence of A. niger was demonstrated by the early detection of the allergenic protein Asp n 3 coding gene, which could be considered a species-specific marker. The use of primers designed based on the conserved region of the Asp n 3 encoding gene allowed us to identify the presence of the closely related fungal species Aspergillus fumigatus by detecting Asp n 3 homologous protein, which can be cross-reactive. The use of conserved segments of the Asp n 3 gene or its entire sequence allows us to detect phylogenetically closely related species within the Aspergilaceae family or to identify species-specific contaminating fungi.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Gunda Petraitytė ◽  
Kamilė Šiaurytė ◽  
Violeta Mikštienė ◽  
Loreta Cimbalistienė ◽  
Dovilė Kriaučiūnienė ◽  
...  

Abstract Background Acrodysostosis is a rare hereditary disorder described as a primary bone dysplasia with or without hormonal resistance. Pathogenic variants in the PRKAR1A and PDE4D genes are known genetic causes of this condition. The latter gene variants are more frequently identified in patients with midfacial and nasal hypoplasia and neurological involvement. The aim of our study was to analyse and confirm a genetic cause of acrodysostosis in a male patient. Case presentation We report on a 29-year-old Lithuanian man diagnosed with acrodysostosis type 2. The characteristic phenotype includes specific skeletal abnormalities, facial dysostosis, mild intellectual disability and metabolic syndrome. Using patient’s DNA extracted from peripheral blood sample, the novel, likely pathogenic, heterozygous de novo variant NM_001104631.2:c.581G > C was identified in the gene PDE4D via Sanger sequencing. This variant causes amino acid change (NP_001098101.1:p.(Arg194Pro)) in the functionally relevant upstream conserved region 1 domain of PDE4D. Conclusions This report further expands the knowledge of the consequences of missense variants in PDE4D that affect the upstream conserved region 1 regulatory domain and indicates that pathogenic variants of the gene PDE4D play an important role in the pathogenesis mechanism of acrodysostosis type 2 without significant hormonal resistance.


2021 ◽  
Author(s):  
Vincent Ayieko ◽  
Rivka Elbaum

&lt;p&gt;Plants produce silica in large quantities, up to 2-10% per dry weight, depending on growth conditions and plant species. The roots absorb monosilicic acid from the soil, and it is transported with water and distributed in nearly all plant tissues. With evapotranspiration, the silicic acid solution is concentrated, and eventually silica forms at leaf epidermis. Nonetheless, the distribution of silica deposits is not uniform within plant tissues. This suggests that there are biological processes that control the deposition of the mineral. In a recent work, the protein Siliplant1 (Slp1) was discovered to precipitate silica in plants. Slp1 is expressed in sorghum leaf epidermal cells called silica cells. Biological molecules active in silica formation typically present positive charge moieties and form some 3D aggregation pattern that allows monosilicic acid to condense into bigger organized structures. Slp1 contains a 24 amino acid N-terminal signal peptide, followed by 124 amino acid linking sequence and a 7-repeat sequence. Slp1 without the signal peptide and a short, conserved peptide appearing five times in Slp1 precipitate silica &lt;em&gt;in vitro&lt;/em&gt;. However, the activity of other parts of Slp1 in silica precipitation remains unknown. To analyze sequence motifs that precipitate silica, we synthesized segments of the repeating sequence in Slp1, and characterized the precipitation reactions by yield and spectroscopy. Thermal gravimetric and electron microscopy analyses are planned. Preliminary results show that the most conserved region in the repeating sequence precipitates silica at a concentration range of 1-1.5 mg/mL in a 100 mM silicic acid solution. Under buffered conditions, this peptide is positively charged, precipitating silica at pH between 6 and 7. In contrast, silica-gel formed at pH 8 or 5 after overnight incubation. In comparison, the full length Slp1 (missing the signal peptide) precipitates silica at an estimated concentration of 2.9 mg/mL and pH 6-8. Peptides flanking the conserved sequence did not precipitate silica. Precipitation reactions with combinations of peptides precipitated silica only when the conserved peptide was mixed with the peptide following it at a 1:1 ratio. This part of Slp1 presents &amp;#8211;OH moieties that may interact with silica. The reaction produced silica gel as well as silica. When the conserved region was mixed with a preceding peptide, only silica-gel formed. This region presents acidic groups that may block the positive charge on the conserved region. We conclude that the conserved peptide is the only part of the Slp1 repeating region that actively precipitates silica. The peptides flanking the conserved region are not directly involved in silica precipitation.&amp;#160; However, they may allow silica precipitation at increased pH, as seen in the full length Slp1. Further investigation is planned to understand their roles in silica formation.&lt;/p&gt;


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yansheng Ye ◽  
Erin R. Tyndall ◽  
Van Bui ◽  
Zhenyuan Tang ◽  
Yan Shen ◽  
...  

AbstractDuring autophagy the enzyme Atg3 catalyzes the covalent conjugation of LC3 to the amino group of phosphatidylethanolamine (PE) lipids, which is one of the key steps in autophagosome formation. Here, we have demonstrated that an N-terminal conserved region of human Atg3 (hAtg3) communicates information from the N-terminal membrane curvature-sensitive amphipathic helix (AH), which presumably targets the enzyme to the tip of phagophore, to the C-terminally located catalytic core for LC3–PE conjugation. Mutations in the putative communication region greatly reduce or abolish the ability of hAtg3 to catalyze this conjugation in vitro and in vivo, and alter the membrane-bound conformation of the wild-type protein, as reported by NMR. Collectively, our results demonstrate that the N-terminal conserved region of hAtg3 works in concert with its geometry-selective AH to promote LC3–PE conjugation only on the target membrane, and substantiate the concept that highly curved membranes drive spatial regulation of the autophagosome biogenesis during autophagy.


Sign in / Sign up

Export Citation Format

Share Document