Antifibrotic effect of synthetic Smad/Sp1 chimeric decoy oligodeoxynucleotide through the regulation of epithelial mesenchymal transition in unilateral ureteral obstruction model of mice

2013 ◽  
Vol 95 (2) ◽  
pp. 136-143 ◽  
Author(s):  
Woo Jung Sung ◽  
Kyung-Hyun Kim ◽  
Yong-Jin Kim ◽  
Young-Chae Chang ◽  
In Hee Lee ◽  
...  
2020 ◽  
Vol 319 (1) ◽  
pp. F93-F105
Author(s):  
Chen Li ◽  
Yuan-Fei Liu ◽  
Chong Huang ◽  
Yan-Xia Chen ◽  
Cheng-Yun Xu ◽  
...  

The long noncoding RNA nuclear enriched abundant transcript 1 (NEAT1) has been reported to promote liver fibrosis progression. However, its molecular mechanism in renal fibrosis was not elucidated. In the present study, an in vitro model of renal fibrosis was established with HK-2 and HKC-8 cells treated with transforming growth factor-β1. C57BL/6 mice were used for the in vivo model with unilateral ureteral obstruction. Our results indicated that NEAT1 and collagen type I levels were significantly upregulated, whereas miR-129 was obviously downregulated, in the progression of renal fibrosis. Meanwhile, NEAT1 knockdown or miR-129 overexpression inhibited collagen type I deposition, the epithelial-mesenchymal transition process, and the inflammation response to suppress renal fibrosis. NEAT1 directly targeted miR-129, and miR-129 directly bound to collagen type I. Downregulation of miR-129 reversed inhibition of renal fibrosis induced by NEAT1 silencing, and upregulation of collagen type I also reversed inhibition of renal fibrosis caused by miR-129 overexpression. NEAT1 knockdown alleviated renal fibrosis in mice subjected to unilateral ureteral obstruction. In conclusion, NEAT1 sponged miR-129 to modulate the epithelial-mesenchymal transition process and inflammation response of renal fibrosis by regulation of collagen type I. Our study indicates a novel role in the regulation of renal fibrosis and provides a new potential treatment target for renal fibrosis.


2014 ◽  
Vol 4 (1) ◽  
Author(s):  
Ryuji Morizane ◽  
Shizuka Fujii ◽  
Toshiaki Monkawa ◽  
Ken Hiratsuka ◽  
Shintaro Yamaguchi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document