collagen type i
Recently Published Documents


TOTAL DOCUMENTS

1405
(FIVE YEARS 320)

H-INDEX

75
(FIVE YEARS 9)

2022 ◽  
Vol 8 ◽  
Author(s):  
Stephanie M. van der Voorn ◽  
Mimount Bourfiss ◽  
Anneline S. J. M. te Riele ◽  
Karim Taha ◽  
Marc A. Vos ◽  
...  

Background: Pathogenic variants in phospholamban (PLN, like p. Arg14del), are found in patients diagnosed with arrhythmogenic (ACM) and dilated cardiomyopathy (DCM). Fibrosis formation in the heart is one of the hallmarks in PLN p.Arg14del carriers. During collagen synthesis and breakdown, propeptides are released into the circulation, such as procollagen type I carboxy-terminal propeptide (PICP) and C-terminal telopeptide collagen type I (ICTP).Aim: To investigate if PICP/ICTP levels in blood are correlative biomarkers for clinical disease severity and outcome in PLN p.Arg14del variant carriers.Methods: Serum and EDTA blood samples were collected from 72 PLN p.Arg14del carriers (age 50.5 years, 63% female) diagnosed with ACM (n = 12), DCM (n = 14), and preclinical variant carriers (n = 46). PICP levels were measured with an enzyme-linked immune sorbent assay and ICTP with a radio immuno-assay. Increased PICP/ICTP ratios suggest a higher collagen deposition. Clinical data including electrocardiographic, and imaging results were adjudicated from medical records.Results: No correlation between PICP/ICTP ratios and late gadolinium enhancement (LGE) was found. Moderate correlations were found between the PICP/ICTP ratio and end-diastolic/systolic volume (both rs = 0.40, n = 23, p = 0.06). PICP/ICTP ratio was significantly higher in patients with T wave inversion (TWI), especially in leads V4–V6, II, III, and aVF (p < 0.022) and in patients with premature ventricular contractions (PVCs) during an exercise tolerance test (p = 0.007).Conclusion: High PICP/ICTP ratios correlated with clinical parameters, such as TWI and PVCs. Given the limited size and heterogeneity of the patient group, additional studies are required to substantiate the incremental prognostic value of these fibrosis biomarkers in PLN p.Arg14del patients.


2022 ◽  
Author(s):  
Ana N Strat ◽  
Alexander Kirschner ◽  
Hannah Yoo ◽  
Ayushi Singh ◽  
Tyler Bague ◽  
...  

In glaucoma, astrocytes within the optic nerve head (ONH) rearrange their actin cytoskeleton, while becoming reactive and upregulating intermediate filament glial fibrillary acidic protein (GFAP). Increased transforming growth factor beta 2 (TGFβ2) levels have been implicated in glaucomatous ONH dysfunction. A key limitation of using conventional 2D culture to study ONH astrocyte behavior is the inability to faithfully replicate the in vivo ONH microenvironment. Here, we engineer a 3D ONH astrocyte hydrogel to better mimic in vivo mouse ONH astrocyte (MONHA) morphology, and test induction of MONHA reactivity using TGFβ2. Primary MONHAs were isolated from C57BL/6J mice and cell purity confirmed. To engineer 3D cell-laden hydrogels, MONHAs were mixed with photoactive extracellular matrix components (collagen type I, hyaluronic acid) and crosslinked for 5 minutes using a photoinitiator (0.025% riboflavin) and UV light (405-500 nm, 10.3 mW/cm2). MONHA-encapsulated hydrogels were cultured for 3 weeks, and then treated with TGFβ2 (2.5, 5.0 or 10 ng/ml) for 7 days to assess for reactivity. Following encapsulation, MONHA retained high cell viability in hydrogels and continued to proliferate over 4 weeks as determined by live/dead staining and MTS assays. Sholl analysis demonstrated that MONHAs within hydrogels developed increasing process complexity with longer process length over time. Cell processes connected with neighboring cells, coinciding with Connexin43 expression within astrocytic processes. Treatment with TGFβ2 induced reactivity in MONHA-encapsulated hydrogels as determined by altered F-actin cytoskeletal morphology, increased GFAP expression, and elevated fibronectin and collagen IV deposition. Our data sets the stage for future use of this 3D biomimetic ONHA-encapsulated hydrogel to investigate ONHA behavior in response to glaucomatous insult.


Author(s):  
Vennela Boyalla ◽  
Leanne Harling ◽  
Alice Snell ◽  
Ines Kralj-Hans ◽  
Ana Barradas-Pires ◽  
...  

Abstract Background A high proportion of patients undergoing catheter ablation (CA) for atrial fibrillation (AF) experience recurrence of arrhythmia. This meta-analysis aims to identify pre-ablation serum biomarker(s) associated with arrhythmia recurrence to improve patient selection before CA. Methods A systematic approach following PRISMA reporting guidelines was utilised in libraries (Pubmed/Medline, Embase, Web of Science, Scopus) and supplemented by scanning through bibliographies of articles. Biomarker levels were compared using a random-effects model and presented as odds ratio (OR). Heterogeneity was examined by meta-regression and subgroup analysis. Results In total, 73 studies were identified after inclusion and exclusion criteria were applied. Nine out of 22 biomarkers showed association with recurrence of AF after CA. High levels of N-Terminal-pro-B-type-Natriuretic Peptide [OR (95% CI), 3.11 (1.80–5.36)], B-type Natriuretic Peptide [BNP, 2.91 (1.74–4.88)], high-sensitivity C-Reactive Protein [2.04 (1.28–3.23)], Carboxy-terminal telopeptide of collagen type I [1.89 (1.16–3.08)] and Interleukin-6 [1.83 (1.18–2.84)] were strongly associated with identifying patients with AF recurrence. Meta-regression highlighted that AF type had a significant impact on BNP levels (heterogeneity R2 = 55%). Subgroup analysis showed that high BNP levels were more strongly associated with AF recurrence in paroxysmal AF (PAF) cohorts compared to the addition of non-PAF patients. Egger’s test ruled out the presence of publication bias from small-study effects. Conclusion Ranking biomarkers based on the strength of association with outcome provides each biomarker relative capacity to predict AF recurrence. This will provide randomised controlled trials, a guide to choosing a priori tool for identifying patients likely to revert to AF, which are required to substantiate these findings. Graphical abstract


2022 ◽  
Author(s):  
Pegah Sarraf ◽  
Razieh Sadat Moayeri ◽  
Noushin Shokouhinejad ◽  
Mehrfam Khoshkhounejad ◽  
Roya Karimi ◽  
...  

Abstract Background: PRF as one of the favorable scaffolds in Regenerative Endodontic Treatment (RET), has several limitations such as the need for blood sampling and special equipment. High available commercial scaffolds such as fibrin are able to meet all the necessary requirements of dentin tissue engineering. The present study was designed to evaluate the effect of PRF and fibrin gel, with and without the presence of EDTA-treated radicular dentin segments on SCAP viability, proliferation, migration, and differentiation.Methods: Radicular dentin were prepared from extracted teeth and treated by EDTA 17% .The samples were divided into 6 groups: Dentin/PRF/Cell, Dentin/Fibrin/Cell, Dentin/Cell, PRF/Cell, Fibrin/Cell and Cell (Control). SCAP viability was assessed using MTT assay. Gene expression levels of odontogenic markers [Dentin sialophosphoprotein (DSPP), Dentin matrix protein 1(DMP1), Collagen type I Alpha 1(COL 1A1) and Alkaline phosphatase (ALP) were assessed using qrt-PCR. Cell migration were also evaluated by means of scratch test. Results: The results of MTT assay at showed that the viability of SCAP significantly increased after 7 days for both groups containing fibrin (P <0.05). The viability of SCAP seeded on Dentin/PRF and PRF significantly decreased after 7 days (P <0.001). The odontogenic markers were significantly expressed for both scaffolds in the presence of dentin segment (p<0.05). Significant decrease in scratch area was seen in Fibrin/Dentin group (p < 0.001)Conclusions:Fibrin beside EDTA-treated dentin showed great ability in survival, proliferation, differentiation, and migration of SCAP rather than PRF.


Cosmetics ◽  
2022 ◽  
Vol 9 (1) ◽  
pp. 8
Author(s):  
Nesma Aly ◽  
Emilie Benoit ◽  
Jean-Luc Chaubard ◽  
Kavyasree Chintalapudi ◽  
Soojin Choung ◽  
...  

Collagen and its derivative proteins have been widely used as a major component for cosmetic formulations as a natural ingredient and moisturizer. Most commercially available collagens are animal-derived collagen type I and other forms of collagen, such as type III collagen, are far less prevalent in animals, making extraction and purification extremely difficult and expensive. Here, we report the production of a 50 kDa protein produced in yeast that is 100% identical to the N-terminus of the human type III collagen. This recombinant protein has a larger molecular weight than most incumbent recombinant collagen proteins available for personal care applications. We report the industrialization of both the fermentation and purification processes to produce a final recombinant protein product. This final protein product was shown to be safe for general applications to human skin and compatible with common formulation protocols, including ethanol-based formulations. This recombinant collagen type III protein was also shown to uniquely stimulate both collagen type I and type III production and secretion by primary human dermal fibroblasts. The unique combination of biostimulation, compatibility with beauty product formulations and demonstrated commercial production, make this novel recombinant type III collagen a good candidate for broad application in the cosmetics industry.


2021 ◽  
Vol 23 (1) ◽  
pp. 91
Author(s):  
Tomasz P. Lehmann ◽  
Urszula Guderska ◽  
Klaudia Kałek ◽  
Maria Marzec ◽  
Agnieszka Urbanek ◽  
...  

This article describes several recent examples of miRNA governing the regulation of the gene expression involved in bone matrix construction. We present the impact of miRNA on the subsequent steps in the formation of collagen type I. Collagen type I is a main factor of mechanical bone stiffness because it constitutes 90–95% of the organic components of the bone. Therefore, the precise epigenetic regulation of collagen formation may have a significant influence on bone structure. We also describe miRNA involvement in the expression of genes, the protein products of which participate in collagen maturation in various tissues and cancer cells. We show how non-collagenous proteins in the extracellular matrix are epigenetically regulated by miRNA in bone and other tissues. We also delineate collagen mineralisation in bones by factors that depend on miRNA molecules. This review reveals the tissue variability of miRNA regulation at different levels of collagen maturation and mineralisation. The functionality of collagen mRNA regulation by miRNA, as proven in other tissues, has not yet been shown in osteoblasts. Several collagen-regulating miRNAs are co-expressed with collagen in bone. We suggest that collagen mRNA regulation by miRNA could also be potentially important in bone metabolism.


2021 ◽  
Vol 23 (1) ◽  
pp. 32
Author(s):  
María Blanco ◽  
Noelia Sanz ◽  
Ana C. Sánzhez ◽  
Begoña Correa ◽  
Ricardo I. Pérez-Martín ◽  
...  

High molecular weight (Mw) collagen hydrolysates have been demonstrated to produce a higher synthesis of collagen type I mRNA. Mw determination is a key factor maximizing the effect of collagen hydrolysates on collagen type I synthesis by fibroblasts. This work aimed to achieve a high average Mw in Blue Shark Collagen Hydrolysate, studying different hydrolysis parameters by GPC-LS analysis and testing its effect on mRNA Type I collagen expression. Analysis revealed differences in blue shark collagen hydrolysates Mw depending on hydrolysis conditions. Papain leads to obtaining a significantly higher Mw hydrolysate than Alcalase at different times of hydrolysis and at different enzyme/substrate ratios. Besides, the time of the hydrolysis factor is more determinant than the enzyme/substrate ratio factor for obtaining a higher or lower hydrolysate Mw when using Papain as the enzyme. Contrary, Alcalase hydrolysates resulted in similar Mw with no significant differences between different conditions of hydrolysis assayed. Blue shark collagen hydrolysate showing the highest Mw showed neither cytotoxic nor proliferation effect on fibroblast cell culture. Besides, it exhibited an increasing effect on both mRNA expression and pro-collagen I production.


2021 ◽  
Vol 22 (24) ◽  
pp. 13458
Author(s):  
Ragda Saleem ◽  
Samih Mohamed-Ahmed ◽  
Rammah Elnour ◽  
Ellen Berggreen ◽  
Kamal Mustafa ◽  
...  

Oxidative stress from high levels of intracellular reactive oxygen species (ROS) has been linked to various bone diseases. Previous studies indicate that mesenchymal stem cells (MSC) secrete bioactive factors (conditioned medium (MSC-CM)) that have antioxidant effects. However, the antioxidant role of MSC-CM on osteogenesis has not been fully studied. We aimed to identify antioxidant proteins in MSC-CM using mass spectrometry-based proteomics and to explore their effects on osteogenic differentiation of human bone marrow mesenchymal stem cells (hBMSC) exposed to oxidative stress induced by hydrogen peroxide (H2O2). Our analysis revealed that MSC-CM is comprised of antioxidant proteins that are involved in several biological processes, including negative regulation of apoptosis and positive regulation of cell proliferation. Then, hBMSC exposed to H2O2 were treated with MSC-CM, and the effects on their osteogenic differentiation were evaluated. MSC-CM restored H2O2-induced damage to hBMSC by increasing the antioxidant enzyme-SOD production and the mRNA expression level of the anti-apoptotic BCL-2. A decrease in ROS production and cellular apoptosis was also shown. MSC-CM also modulated mRNA expression levels of osteogenesis-related genes, runt-related transcription factor 2, collagen type I, bone morphogenic protein 2, and osteopontin. Furthermore, collagen type I protein secretion, alkaline phosphatase activity, and in vitro mineralization were increased. These results indicate that MSC-CM contains several proteins with antioxidant and anti-apoptotic properties that restored the impaired hBMSC osteogenic differentiation associated with oxidative stress.


2021 ◽  
Vol 8 ◽  
Author(s):  
Hiroaki Fuji ◽  
Grant Miller ◽  
Takahiro Nishio ◽  
Yukinori Koyama ◽  
Kevin Lam ◽  
...  

Liver fibrosis develops in response to chronic toxic or cholestatic injury, and is characterized by apoptosis of damaged hepatocytes, development of inflammatory responses, and activation of Collagen Type I producing myofibroblasts that make liver fibrotic. Two major cell types, Hepatic Stellate Cells (HSCs) and Portal Fibroblasts (PFs) are the major source of hepatic myofibroblasts. Hepatotoxic liver injury activates Hepatic Stellate Cells (aHSCs) to become myofibroblasts, while cholestatic liver injury activates both aHSCs and Portal Fibroblasts (aPFs). aPFs comprise the major population of myofibroblasts at the onset of cholestatic injury, while aHSCs are increasingly activated with fibrosis progression. Here we summarize our current understanding of the role of aPFs in the pathogenesis of cholestatic fibrosis, their unique features, and outline the potential mechanism of targeting aPFs in fibrotic liver.


2021 ◽  
Vol 22 (24) ◽  
pp. 13331
Author(s):  
Annalisa Frattini ◽  
Simona Bolamperti ◽  
Roberto Valli ◽  
Marco Cipolli ◽  
Rita Maria Pinto ◽  
...  

Shwachman–Diamond syndrome (SDS) is a rare autosomal recessive disorder characterized by bone marrow failure, exocrine pancreatic insufficiency, and skeletal abnormalities, caused by loss-of-function mutations in the SBDS gene, a factor involved in ribosome biogenesis. By analyzing osteoblasts from SDS patients (SDS-OBs), we show that SDS-OBs displayed reduced SBDS gene expression and reduced/undetectable SBDS protein compared to osteoblasts from healthy subjects (H-OBs). SDS-OBs cultured in an osteogenic medium displayed a lower mineralization capacity compared to H-OBs. Whole transcriptome analysis showed significant differences in the gene expression of SDS-OBs vs. H-OBs, particularly in the ossification pathway. SDS-OBs expressed lower levels of the main genes responsible for osteoblastogenesis. Of all downregulated genes, Western blot analyses confirmed lower levels of alkaline phosphatase and collagen type I in SDS-OBs than in H-OBs. Interestingly, SDS-OBs showed higher protein levels of p53, an inhibitor of osteogenesis, compared to H-OBs. Silencing of Tp53 was associated with higher collagen type I and alkaline phosphatase protein levels and an increase in SDS-OB mineralization capacity. In conclusion, our results show that the reduced capacity of SDS-OBs to mineralize is mediated, at least in part, by the high levels of p53 and highlight an important role of SBDS in osteoblast functions.


Sign in / Sign up

Export Citation Format

Share Document