scholarly journals Piezo1 and BKCa channels in human atrial fibroblasts: Interplay and remodelling in atrial fibrillation

Author(s):  
Dorothee Jakob ◽  
Alexander Klesen ◽  
Benoit Allegrini ◽  
Elisa Darkow ◽  
Diana Aria ◽  
...  
2021 ◽  
Author(s):  
Dorothee Jakob ◽  
Alexander Klesen ◽  
Benoit Allegrini ◽  
Elisa Darkow ◽  
Diana Aria ◽  
...  

AbstractAimsAtrial Fibrillation (AF) is an arrhythmia of increasing prevalence in the aging population of developed countries. One of the important indicators of AF is sustained atrial dilatation, highlighting the importance of mechanical overload in the pathophysiology of AF. The mechanisms by which atrial cells, including fibroblasts, sense and react to changing mechanical forces, are not fully elucidated. Here, we characterise stretch-activated ion channels (SAC) in human atrial fibroblasts and changes in SAC-presence and -activity associated with AF.Methods and ResultsUsing primary cultures of human atrial fibroblasts, isolated from patients in sinus rhythm or sustained AF, we combine electrophysiological, molecular and pharmacological tools to identify SAC. Two electrophysiological SAC-signatures were detected, indicative of cation-nonselective and potassium-selective channels. Using siRNA-mediated knockdown, we identified the nonselective SAC as Piezo1. Biophysical properties of the potassium-selective channel, its sensitivity to calcium, paxilline and iberiotoxin (blockers), and NS11021 (activator), indicated presence of calcium-dependent ‘big potassium channels’, BKCa. In cells from AF patients, Piezo1 activity and mRNA expression levels were higher than in cells from sinus rhythm patients, while BKCa activity (but not expression) was downregulated. Both Piezo1-knockdown and removal of extracellular calcium from the patch pipette resulted in a significant reduction of BKCa current during stretch. No co-immunoprecipitation of Piezo1 and BKCa was detected.ConclusionsHuman atrial fibroblasts contain at least two types of ion channels that are activated during stretch: Piezo1 and BKCa. While Piezo1 is directly stretch-activated, the increase in BKCa activity during mechanical stimulation appears to be mainly secondary to calcium influx via SAC such as Piezo1. During sustained AF, Piezo1 is increased, while BKCa activity is reduced, highlighting differential regulation of both channels. Our data support the presence and interplay of Piezo1 and BKCa in human atrial fibroblasts in the absence of physical interactions between the two channel proteins.


EP Europace ◽  
2021 ◽  
Vol 23 (Supplement_3) ◽  
Author(s):  
D Jakob ◽  
A Klesen ◽  
B Allegrini ◽  
E Darkow ◽  
D Aria ◽  
...  

Abstract Funding Acknowledgements Type of funding sources: Public grant(s) – National budget only. Main funding source(s): Ministry of Science, Research and Arts Baden-Württemberg (MWK-BW Sonderlinie Medizin) Atrial Fibrillation (AF) is an arrhythmia of increasing prevalence. One of the important indicators for AF is sustained atrial dilatation, highlighting the importance of mechanical overload in the pathophysiology of AF. The mechanisms by which atrial cells, including fibroblasts, sense and react to such changing mechanical forces, are not fully elucidated. Here, we characterise stretch-activated ion channels (SAC) in human atrial fibroblasts and changes in their expression and activity associated with AF. Using primary cultures of human atrial fibroblasts, isolated from patients in sinus rhythm or with sustained AF, we combine electrophysiological, molecular and pharmacological tools to identify SAC. Two electrophysiological SAC-signatures were detected, indicative of cation-nonselective and potassium-selective channels. Using siRNA-mediated knockdown, we identified the nonselective SAC as Piezo1. Biophysical properties of the potassium-selective channel and its pharmacology indicated presence of ‘big potassium channels’, BKCa. In cells from AF patients, Piezo1 activity and mRNA expression levels were higher than in cells from sinus rhythm patients, while BKCa activity (but not expression) was downregulated. Both Piezo1-knockdown and removal of extracellular calcium from the patch pipette resulted in a significant reduction of stretch-induced BKCa current. No co-immunoprecipitation of Piezo1 and BKCa was detected. Human atrial fibroblasts express functional Piezo1 and BKCa channels. While Piezo1 is directly stretch-activated, the increase in BKCa activity during mechanical stimulation appears to be mainly secondary to calcium influx via SAC such as Piezo1. During sustained AF, Piezo1 is increased, while BKCa activity is reduced, highlighting differential regulation of both channels. Our data show the presence and activity of Piezo1 and BKCa in human atrial fibroblasts and suggest an interplay between the two in the absence of direct physical interactions.


2010 ◽  
Vol 43 (16) ◽  
pp. 12
Author(s):  
MITCHEL L. ZOLER
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document