Five novel mutations in CYP11B2 gene detected in patients with aldosterone synthase deficiency type I: Functional characterization and structural analyses

2010 ◽  
Vol 100 (4) ◽  
pp. 357-364 ◽  
Author(s):  
Huy-Hoang Nguyen ◽  
Frank Hannemann ◽  
Michaela F. Hartmann ◽  
Ewa M. Malunowicz ◽  
Stefan A. Wudy ◽  
...  
1999 ◽  
Vol 52 (6) ◽  
pp. 298-300 ◽  
Author(s):  
Juan P. López-Siguero ◽  
Emilio García-García ◽  
Michael Peter ◽  
Wolfgang G. Sippell

1994 ◽  
Vol 93 (2) ◽  
pp. 486-492 ◽  
Author(s):  
P H Reitsma ◽  
H K Ploos van Amstel ◽  
R M Bertina

1997 ◽  
Vol 82 (11) ◽  
pp. 3525-3528
Author(s):  
Michael Peter ◽  
Lubna Fawaz ◽  
Stenvert L. S. Drop ◽  
Hendrik K. A. Visser ◽  
Wolfgang G. Sippell

We studied two of the three patients with a hereditary defect in the biosynthesis of aldosterone originally described by Visser and Cost in 1964. All three presented as newborns with salt-losing syndrome and failure to thrive. The original biochemical studies showed a defect in the 18-hydroxylation of corticosterone. According to the nomenclature proposed by Ulick, this defect would be termed corticosterone methyl oxidase deficiency type I. We measured plasma steroids in the untreated adult patients and performed molecular genetic studies. Aldosterone and 18-OH-corticosterone were decreased, whereas corticosterone and 11-deoxycorticosterone were elevated, thus confirming the diagnosis of corticosterone methyl oxidase deficiency type I. Cortisol and its precursors were in the normal range. Genetic defects in the gene CYP11B2 encoding aldosterone synthase (P450c11Aldo) have been described in a few cases. We identified a homozygous single base exchange (G to T) in codon 255 (GAG) causing a premature stop codon E255X (TAG). This mutation destroys a Aoc II restriction site. Digestion of a PCR fragment containing exon 4 of CYP11B2 (261 bp) with this restriction enzyme revealed in the two patients homozygous for the E255X mutation only a 261-bp fragment, whereas the heterozygous parents had three fragments (261 bp from the mutant allele and 194 and 67 bp from the wild-type allele). The mutant enzyme had lost the five terminal exons containing the heme binding site, and thus there was a loss of function enzyme. We conclude that the biochemical phenotype of these prismatic cases of congenital hypoaldosteronism can be explained by the patients genotype.


2016 ◽  
Vol 13 (4) ◽  
pp. 3127-3132 ◽  
Author(s):  
NIU LI ◽  
JUAN LI ◽  
YU DING ◽  
TINGTING YU ◽  
YONGNIAN SHEN ◽  
...  

1989 ◽  
Vol 62 (03) ◽  
pp. 897-901 ◽  
Author(s):  
Hans K Ploos van Amstel ◽  
Pieter H Reitsma ◽  
Karly Hamulyák ◽  
Christine E M de Die-Smulders ◽  
Pier M Mannucci ◽  
...  

SummaryProbands from 15 unrelated families with hereditary protein S deficiency type I, that is having a plasma total protein S concentration fifty percent of normal, were screened for abnormalities in their protein S genes by Southern analysis. Two probands were found to have a deviating DNA pattern with the restriction enzyme Mspl. In the two patients the alteration concerned the disappearance of a Mspl restriction site, CCGG, giving rise to an additional hybridizing Mspl fragment.Analysis of relatives of both probands showed that in one family the mutation does not co-segregate with the phenotype of reduced plasma protein S. In the family of the other proband, however, complete linkage between the mutated gene pattern and the reduced total protein S concentration was found: 12 heterozygous relatives showed the additional Mspl fragment but none of the investigated 26 normal members of the family. The mutation is shown to reside in the PSβ gene, the inactive protein S gene. The cause of type I protein S deficiency, a defect PSα gene has escaped detection by Southern analysis. No recombination has occurred between the PSα gene and the PSβ gene in 23 informative meioses. This suggests that the two protein S genes, located near the centromere of chromosome 3, are within 4 centiMorgan of each other.


1995 ◽  
Vol 73 (05) ◽  
pp. 746-749 ◽  
Author(s):  
E Sacchi ◽  
M Pinotti ◽  
G Marchetti ◽  
G Merati ◽  
L Tagliabue ◽  
...  

SummaryA protein S gene polymorphism, detectable by restriction analysis (BstXI) of amplified exonic sequences (exon 15), was studied in seven Italian families with protein S deficiency. In the 17 individuals heterozygous for the polymorphism the study was extended to platelet mRNA through reverse transcription, amplification and densitometric analysis. mRNA produced by the putative defective protein S genes was absent in three families and reduced to a different extent (as expressed by altered allelic ratios) in four families. The allelic ratios helped to distinguish total protein S deficiency (type I) from free protein S deficiency (type IIa) in families with equivocal phenotypes. This study indicates that the study of platelet mRNA, in association with phenotypic analysis based upon protein S assays in plasma, helps to classify patients with protein S deficiency.


Sign in / Sign up

Export Citation Format

Share Document