A novel method for fundamental frequency measurement of multi-harmonic signals with noises using numerical differentiation

2005 ◽  
Vol 19 (4) ◽  
pp. 806-816 ◽  
Author(s):  
J.K. Wu ◽  
J. Long ◽  
J.X. Wang ◽  
F. He
2011 ◽  
Vol 383-390 ◽  
pp. 4962-4966
Author(s):  
Ling Li ◽  
Guo Bin Jin ◽  
Shao Ping Huang ◽  
Xiao Peng

A novel method on frequency measurement based on improved TLS-ESPRIT (total least square estimation of signal parameters via rotational invariance techniques) is proposed in this paper with the research on fundamental frequency measurement in power system. TLS-ESPRIT is belong to subspace estimation in modern signal process. Noise is included in signal model, so it is independent on noise. But the same multi-poles cannot be taken when signal is in noise and based on TLS-ESPRIT. Multiple poles restoring is presented to take the true poles accurately. It is revealed that fundamental frequency is detected accurately in harmonics, interharmonics, noise and frequency fluctuations and better anti-noise ability in particular better adaptiveness on time varying signal in amplitude by simulation results.


1992 ◽  
Vol 336 (1278) ◽  
pp. 375-382 ◽  

A complex tone often evokes a pitch sensation associated with its extreme spectral components, besides the holistic pitch associated with its fundamental frequency. We studied the edge pitch created at the upper spectral edge of complexes with a low-pass spectrum by asking subjects to adjust the frequency of a sinusoidal comparison tone to the perceived pitch. Measurements were performed for different values of the fundamental frequency and of the upper frequency of the complex as well as for three different phase relations of the harmonic components. For a wide range of these parameters the subjects could adjust the comparison tone with a high accuracy, measured as the standard deviation of repeated adjustments, to a frequency close to the nominal edge frequency. The detailed dependence of the matching accuracy on temporal parameters of the harmonic complexes suggests that the perception of the edge pitch in harmonic signals is related to the temporal resolution of the hearing system. This resolution depends primarily on the time constants of basilar-membrane filters and on additional limitations due to neuronal processes.


2020 ◽  
Vol 32 (1) ◽  
pp. 357
Author(s):  
Chih-Hung Lee ◽  
Chi-Chun Huang ◽  
Men-Shen Tsai

Sign in / Sign up

Export Citation Format

Share Document