harmonic signals
Recently Published Documents


TOTAL DOCUMENTS

263
(FIVE YEARS 51)

H-INDEX

17
(FIVE YEARS 2)

Author(s):  
S. Tyshko ◽  
O. Lavrut ◽  
V. Smolar ◽  
O. Zabula ◽  
Yu. Chernichenko

The article defines the list of technical characteristics of armaments and military equipment (ARM), the value of which is measured using phase methods. An analysis of known methods that have found wide application in measuring technology, which is designed to determine the technical characteristics associated with the measurement of phase shift during the development, manufacture and operation of weapons. Based on this analysis, it was determined that the measuring systems are designed to determine the phase shift of two harmonic signals in their composition have two channels of information transmission. This architecture of the implementation of measuring systems leads to the fact that a significant impact on the accuracy of the proposed measurement problem, makes a component of the error due to the phase symmetry of the signal transmission channels, as well as internal and external noise. As an alternative approach to solving the measurement problem of determining the phase shift of two harmonic signals, which will significantly reduce the error component due to phase asymmetry of information transmission channels, it is proposed to use the signal obtained by summing harmonic signals after full-wave transformation followed by spectral analysis. In order to implement the above approach, a measurement problem was set to determine the phase shift of two harmonic signals, using spectral analysis of the signal obtained by summing the harmonic signals after their full-wave transformation. A list of assumptions required for the synthesis of analytical relations that establish the relationship between the spectra of phases and amplitudes (power) of the signal obtained by summing harmonic signals after their full-wave transformation and phase shift of two harmonic signals. Analytical relationships are proposed that establish the relationship between the above characteristics. It is shown that the values of the spectrum of phases and amplitudes, which are calculated using the proposed expressions, differ from the values obtained in the calculations using the Fourier series coefficients, not more than 0.1%.


2021 ◽  
Vol 2086 (1) ◽  
pp. 012023
Author(s):  
V A Mastalieva ◽  
V Neplokh ◽  
A I Morozov ◽  
A A Nikolaeva ◽  
A S Gudovskikh ◽  
...  

Abstract This work studies generation of second and third harmonics in arrays of vertically oriented silicon nanowires (SiNWs) encapsulated into a silicone membrane and separated from the growth substrate. The structures were produced by plasma-chemical etching of silicon substrate resulting in a formation of homogeneous arrays of SiNWs. Such SiNW-based membranes demonstrated efficient infrared-to-visible light conversion by generation of second and third harmonic signals visible by a naked eye. This study contributes to the development of technology of optical devices based on silicon and presents a new route for visualization of infrared radiation.


2021 ◽  
Vol 3 (397) ◽  
pp. 97-114
Author(s):  
A. Kleschev ◽  

Object and purpose of research. This paper obtains solutions and performs estimations of characteristics of sound reflection and scattering by ideal and elastic bodies of various shapes (analytical and non-analytical) near media interface, or underwater sonic channel, or in a planar waveguide with a solid elastic bottom. Materials and methods. The harmonic signals are investigated with the method of normal waves based on the phase velocity of signal propagation, and impulse signals related to the energy transfer are studied using the method of real and imaginary sources and scatterers based on the group velocity of propagation. Main results. The scattered sound field is calculated for ideal spheroids (elongated and compressed) at fluid – ideal medium interface. The spectrum of a scattered impulse signal is calculated for a body placed in a sonic channel. First reflected impulses are found for an ideal spheroid in a planar waveguide with anisotropic bottom. Conclusion. In the studies of diffraction characteristics of bodies at media interfaces it was found that the main contribution to scattered field is given by interference of scattered fields rather than interaction of scatterers (real or imaginary). It is shown that at long distances the spectral characteristics of the channel itself have a prevalent role. When impulse sound signals in the planar waveguide are used, it is necessary to apply the method of real and imaginary sources and scatterers based on the group velocity of sound propagation.


2021 ◽  
Author(s):  
Ilario A. Azzollini ◽  
Michelangelo Bin ◽  
Pauline Bernard ◽  
Lorenzo Marconi

2021 ◽  
Vol 76 (3) ◽  
pp. 237-245
Author(s):  
R. Gansel ◽  
C. Zimmermann ◽  
L. V. Fricke ◽  
M. Lüdtke ◽  
H. Klümper-Westkamp ◽  
...  

Abstract For process monitoring and quality assurance of case-hardened components, the determination of the case-hardening depth in the manufacturing process after hardening of the subsurface layer is a quality verification that is often required in industry. Currently, these quality assurance tests can only be realized with destructive measures. During case-hardening, the essential microstructural formation, and thus the key component properties are developed during the heat treatment in the cooling section. The testing technique used in the present study is based on the analysis of harmonic signals of eddy current testing. The aim of this project was to achieve an early identification of incorrect cooling processes in the case of a known transformation behaviour of the components during cooling. The data collected in the industrial hardening process show that an evaluation of the carburizing process on the basis of the case-hardening depth can be carried out non-destructively during component cooling and in the cooled state with the use of eddy current technology.


Electronics ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 1154
Author(s):  
Ferran Paredes ◽  
Cristian Herrojo ◽  
Ferran Martín

This paper presents electromagnetic encoders useful for chipless-RFID and motion control applications. The encoders consist in a pair of linear chains of rectangular apertures implemented by means of 3D printing. One of these chains is periodic and acts as a clock, whereas the other chain contains an identification (ID) code. With these two aperture chains, the ID code can be synchronously read, so that the relative velocity between the tag and the reader is irrelevant. Additionally, it is shown in the paper that by properly designing the reader, it is possible to determine the motion direction. The sensitive part of the reader is a microstrip line loaded with three complementary split ring resonators (CSRRs) etched in the ground plane and fed by three harmonic signals. By encoder motion, the characteristics of the local medium surrounding the CSRRs are modified, and the harmonic signals are amplitude modulated (AM) at the output port of the line, thereby providing the clock signal (which gives the encoder velocity), the ID code (providing also the quasi-absolute position) and the direction of motion. A fabricated prototype encoder is characterized by reading it with a dedicated reader.


Sign in / Sign up

Export Citation Format

Share Document