harmonic components
Recently Published Documents


TOTAL DOCUMENTS

712
(FIVE YEARS 196)

H-INDEX

33
(FIVE YEARS 3)

Universe ◽  
2022 ◽  
Vol 8 (1) ◽  
pp. 38
Author(s):  
Gustavo Dotti

A review of the current status of the linear stability of black holes and naked singularities is given. The standard modal approach, that takes advantage of the background symmetries and analyze separately the harmonic components of linear perturbations, is briefly introduced and used to prove that the naked singularities in the Kerr–Newman family, as well as the inner black hole regions beyond Cauchy horizons, are unstable and therefore unphysical. The proofs require a treatment of the boundary condition at the timelike boundary, which is given in detail. The nonmodal linear stability concept is then introduced, and used to prove that the domain of outer communications of a Schwarzschild black hole with a non-negative cosmological constant satisfies this stronger stability condition, which rules out transient growths of perturbations, and also to show that the perturbed black hole settles into a slowly rotating Kerr black hole. The encoding of the perturbation fields in gauge invariant curvature scalars and the effects of the perturbation on the geometry of the spacetime is discussed. These notes follow from a course delivered at the V José Plínio Baptista School of Cosmology, held at Guarapari (Espírito Santo) Brazil, from 30 September to 5 October 2021.


2022 ◽  
Vol 13 (1) ◽  
pp. 17
Author(s):  
Oumaymah Elamri ◽  
Abdellah Oukassi ◽  
Lhoussain El Bahir ◽  
Zakariae El Idrissi

The goal of this study was to figure out how to regulate an induction motor in a hybrid electric vehicle. Conventional combined vector and direct control induction motors take advantage of the advantages of vector control and direct torque control. It is also a method that avoids some of the difficulties in implementing both of the two control methods. However, for this method of control, the statoric current has a great wealth of harmonic components which, unfortunately, results in a strong undulation of the torque regardless of the region speed. To solve this problem, a five-level neutral point clamped inverter was used. Through multilevel inverter operation, the voltage is closer to the sine wave. The speed and torque are then successfully controlled with a lower level of ripple in the torque response which improves system performance. The analysis of this study was verified with simulation in the MATLAB/Simulink interface. The simulation results demonstrate the high performance of this control strategy.


Author(s):  
Mykhaylo Zagirnyak ◽  
Vita Ogar ◽  
Volodymyr Chenchevoi ◽  
Rostyslav Yatsiuk

Purpose This paper aims to work out a method for calculating losses in induction motor steel taking into account its saturation. Design/methodology/approach The theory of electric machines is applied during the analysis of induction motor equivalent circuits. The theory of Fourier series is used to determine the harmonic components of voltage, current and power. Instantaneous power theory and trigonometric transformations are used to solve algebraic and differential equations and their systems. The methods of approximation and interpolation are applied to obtain analytical expressions from the experimental data. Experimental research was carried out to verify the reliability of theoretical provisions and research results. Findings A method for assessing an induction machine steel as a function of the generalized electromotive force has been proposed. It allows taking into account higher harmonics of the current, which are caused by the presence of nonlinearity of an induction motor magnetic circuit. Practical implications The obtained results can be used in calculating the energy characteristics and operating modes of an induction motor, as well as in the construction of control systems. Originality/value A method for determining the losses in the stator steel of an induction motor, using a generalized electromotive force, has been proposed for the first time. It enables taking into account the currents flowing both in the stator circuit and in the rotor circuit.


2022 ◽  
Vol 2022 ◽  
pp. 1-15
Author(s):  
Jie Jia ◽  
Haoyang Lu ◽  
Xiaobo Li ◽  
Qian Chen

In order to study the nonlinear characteristics of self-excited aerodynamic forces of bluff body bridge section with the change of motion parameters, a numerical wind tunnel is established by the dynamic mesh technique of computational fluid dynamics (CFD). A state-by-state forced vibration method is used to identify the self-excited aerodynamic forces of single degree-of-freedom (DOF) heaving and pitching motion. Fast Fourier transform (FFT) is adopted to obtain frequency-domain data for analysis. The reliability of the obtained aerodynamic results is verified by wind tunnel tests. The results show that the high-order harmonic components are found in the self-excited aerodynamic forces of semiclosed box deck section, which are more significant in aerodynamic lift than in aerodynamic moment. The proportion of aerodynamic nonlinear components increases with amplitude. The effect of amplitude on the nonlinear components of heaving motion is generally higher than that of pitching motion, and aerodynamic moment is highly sensitive to the increase of vertical amplitude. The variation of the nonlinear components of the deck section with frequency is not a simple monotonic relationship, and there is a stationary point at 10 Hz frequency. The existence of wind attack angle makes the proportion of nonlinear components reach more than 30% and greatly increases the proportion of second harmonic. In addition, the high-order harmonic components, which are not integer multiples, are found at large amplitude and positive angle of attack.


2021 ◽  
Vol 23 (6) ◽  
pp. 445-454
Author(s):  
Youssouf Mini ◽  
Ngac Ky Ngac Ky ◽  
Eric Semail

This paper proposes a sensorless control strategy based on Sliding Mode Observer (SMO) for a Five-phase Interior Permanent Magnet Synchronous Machine (FIPMSM), with a consideration of the third harmonic component. Compared to conventional three-phase machines, the third harmonic of back electromotive force (back-EMF) contains more information. Thus, in this paper, the first and third harmonic components of the five-phase machine are considered to estimate the rotor position which is necessary for the vector control. Simulation results are shown to verify the feasibility and the robustness of the proposed sensorless control strategy.


Author(s):  
Christoph Klewe ◽  
Satoru Emori ◽  
Qian Li ◽  
Mengmeng Yang ◽  
Benjamin A. Gray ◽  
...  

Abstract We present the first theoretical and experimental evidence of time-resolved dynamic X-ray magnetic linear dichroism (XMLD) measurements of GHz magnetic precessions driven by ferromagnetic resonance in both metallic and insulating thin films. Our findings show a dynamic XMLD in both ferromagnetic Ni80Fe20 and ferrimagnetic Ni0.65Zn0.35Al0.8Fe1.2O4 for different measurement geometries and linear polarizations. A detailed analysis of the observed signals reveals the importance of separating different harmonic components in the dynamic signal in order to identify the XMLD response without the influence of competing contributions. In particular, RF magnetic resonance elicits a large dynamic XMLD response at the fundamental frequency under experimental geometries with oblique x-ray polarization. The geometric range and experimental sensitivity can be improved by isolating the 2ω Fourier component of the dynamic response.These results illustrate the potential of dynamic XMLD and represent a milestone accomplishment towards the study of GHz spin dynamics in systems beyond ferromagnetic order.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Wenping Wu

Based on the active interference suppression algorithm, this study combines the radar working mode and the interference type and realizes the effective detection of the flaw detection signal by successively processing the radar receiving signal and the filtering processing. Firstly, this article builds a simulation platform similar to the actual situation to verify the existing conventional active interference suppression algorithms. Secondly, for the detection of chirp active deception jamming signals entering from the main lobe, a radar active deception jamming detection method based on the characteristic parameter matching of the harmonic components of active deception jamming signals is proposed. After that, the spectral characteristics of the harmonic components of the deception interference signal are analyzed, and the center frequency and the tuning frequency of the real target echo are obtained. Finally, by establishing a frequency modulation parameter library for possible interference harmonic signal components, the acquisition phase of the radar gate by the jammer matched analysis with the preestablished frequency modulation parameter library is implemented to achieve active deception interference detection. This method can effectively detect active deception jamming signals in a complex tunnel environment. The interference suppression algorithms verified by simulation include noise FM interference suppression algorithm based on cancellation and distance false target interference suppression algorithm based on LFM radar summary processing. Through actual measurement data processing and analysis, the effectiveness of the method is verified and the idea of interference suppression is expanded. The construction of the simulation platform is obtained by appropriately modifying the actual parameters, a certain type of suppression jammer, and a certain type of deception jammer used in a certain countermeasure field test at a radar station.


Author(s):  
В.Ф. Белей ◽  
Г.А. Решетников ◽  
К.В. Коротких

Одним из направлений научно-технического прогресса на объектах морской индустрии является широкое использование технологий, основанных на нелинейных элементах, что позволяет значительно снизить их массогабаритные показатели и расшить их функциональные возможности. Однако применение таких технологий приводит к ухудшению качества электрической энергии, в первую очередь за счет высших гармонических составляющих напряжения и тока. В статье показана природа высших гармонических, выполнен анализ разделов «Правил классификации и постройки морских судов. 2021», российских и ряда зарубежных стандартов в области качества электроэнергии, регламентирующих уровень высших гармонических составляющих напряжения и тока в электрических сетях и системах. В работе приведены результаты теоретических и экспериментальных исследований влияния высших гармонических составляющих на функционирование судового электрооборудования: асинхронных электродвигателей, силовых кабелей, трансформаторов, конденсаторных батарей и систем освещения. Определены выражения, позволяющие оценить это влияние. Показано, что в основном это влияние проявляется: в дополнительном нагреве электрооборудования за счет поверхностного эффекта; вибрации асинхронных электродвигателей при высоких значениях 5 и 7 гармоник напряжения судовой электрической сети. One of the areas of scientific and technological progress at the facilities of the marine industry is the widespread use of technologies based on nonlinear elements, which can significantly reduce their weight-size parameters and dimensions and expand their functional capabilities. However, the use of such technologies leads to a deterioration in the quality of electrical energy, primarily due to higher harmonic components of voltage and current. The article shows the nature of higher harmonics, analyzes the sections of the «Rules for the Classification and Construction of Sea-Going Vessels. 2021», Russian and a number of foreign standards in the field of electric power quality, regulating the level of higher harmonic components of voltage and current in electrical networks and systems. The paper presents the results of theoretical and experimental studies of the influence of higher harmonic components on the functioning of shipboard electrical equipment: asynchronous electric motors, power cables, transformers, capacitor banks and lighting systems. Formulas have been determined to assess this effect. It is shown that the influence is mainly manifested: in additional heating of electrical equipment due to the skin effect; vibrations of asynchronous electric motors at high values of 5th and 7th voltage harmonics of the ship's electrical network.


Author(s):  
K. Jurayeva ◽  
E. Iksar ◽  
I. Khalilova

The article considers the calculation of the modes of occurrence of subharmonic components in traction power supply networks of railway transport, containing traction converters, controlled and uncontrolled rectifiers. The processes of the appearance of harmonic components during the operation of electric locomotives with zone-phase and pulse control using a four-quadrant 4q-S converter in power circuits are considered. Harmonics related to the fundamental and subharmonic components are determined by the harmonic balance method.


Author(s):  
Khashiya Parveen ◽  
Prof. Shravan Vishwakarma

Hybrid energy generation which includes both wind and solar energy has grown exponentially in latest years, and this will continue. Power quality problems such as voltage-swells, voltage-sags, harmonic components, power factor, and inadequate voltage control are caused by intermittent various exposures and the incorporation of wind-turbine and Photo-voltaic power generating systems with the grid. A Static Compensator (STATCOM) is employed to enhance power-quality. The power quality enhancement method for grid-connected wind-turbine and photo voltaic power plants employing STATCOM is introduced in this paper.  The framework of the proposed methodology describes in order to improve the transient voltage stability of the large-scale wind / solar hybrid system, the STATCOM reactive power compensation device is connected to the grid.   The compensator is offered to further improve output parameters such as voltage THD, current THD and active power.


Sign in / Sign up

Export Citation Format

Share Document