Coordinated path-following and direct yaw-moment control of autonomous electric vehicles with sideslip angle estimation

2018 ◽  
Vol 105 ◽  
pp. 183-199 ◽  
Author(s):  
Jinghua Guo ◽  
Yugong Luo ◽  
Keqiang Li ◽  
Yifan Dai
2012 ◽  
Vol 246-247 ◽  
pp. 847-852 ◽  
Author(s):  
Bing Zhu ◽  
Li Tong Guo ◽  
Jian Zhao ◽  
Fang Gao ◽  
Zhen Pan ◽  
...  

This paper presents a Direct Yaw-moment Control (DYC) strategy to prevent light vehicles from entering the unsteady state and improve the handling stability. A novelty of this work is the ability to achieve superior performance through the lower workload of the actuators by using the optimal control allocation method to distribute the active yaw moment. In the main-loop, the DYC controller is designed based on the classical PID algorithm with the yaw rate and sideslip angle feedback. Simulation tests are carried out on the conditions of sine steering and single lane change steering. Results indicate that the working potential of each actuator can be fully utilized and a significant improvement in handling stability can be achieved from the DYC system.


2017 ◽  
Vol 2017 ◽  
pp. 1-15 ◽  
Author(s):  
Wanke Cao ◽  
Zhiyin Liu ◽  
Yuhua Chang ◽  
Antoni Szumanowski

This paper investigates the robust direct yaw-moment control (DYC) through parameter-dependent fuzzy sliding mode control (SMC) approach for all-wheel-independent-drive electric vehicles (AWID-EVs) subject to network-induced delays. AWID-EVs have obvious advantages in terms of DYC over the traditional centralized-drive vehicles. However it is one of the most principal issues for AWID-EVs to ensure the robustness of DYC. Furthermore, the network-induced delays would also reduce control performance of DYC and even deteriorate the EV system. To ensure robustness of DYC and deal with network-induced delays, a parameter-dependent fuzzy sliding mode control (FSMC) method based on the real-time information of vehicle states and delays is proposed in this paper. The results of cosimulations with Simulink® and CarSim® demonstrate the effectiveness of the proposed controller. Moreover, the results of comparison with a conventional FSMC controller illustrate the strength of explicitly dealing with network-induced delays.


2010 ◽  
Vol 2010 ◽  
pp. 1-18 ◽  
Author(s):  
Nenggen Ding ◽  
Saied Taheri

A recursive least square (RLS) algorithm for estimation of vehicle sideslip angle and road friction coefficient is proposed. The algorithm uses the information from sensors onboard vehicle and control inputs from the control logic and is intended to provide the essential information for active safety systems such as active steering, direct yaw moment control, or their combination. Based on a simple two-degree-of-freedom (DOF) vehicle model, the algorithm minimizes the squared errors between estimated lateral acceleration and yaw acceleration of the vehicle and their measured values. The algorithm also utilizes available control inputs such as active steering angle and wheel brake torques. The proposed algorithm is evaluated using an 8-DOF full vehicle simulation model including all essential nonlinearities and an integrated active front steering and direct yaw moment control on dry and slippery roads.


2021 ◽  
Vol 29 (1) ◽  
pp. 124-139 ◽  
Author(s):  
Basilio Lenzo ◽  
Mattia Zanchetta ◽  
Aldo Sorniotti ◽  
Patrick Gruber ◽  
Wouter De Nijs

2001 ◽  
Author(s):  
M. A. Selby ◽  
W. J. Manning ◽  
M. D. Brown ◽  
D. A. Crolla

Abstract This paper studies the benefits of coordinating stability and steerability controllers to reduce vehicle deceleration during limit handling situations. The stability controller, DYC, uses the vehicle brakes to apply a restoring moment when the vehicle sideslip angle and sideslip velocity exceed fixed bounds. This use of the brakes interferes with the longitudinal dynamics of the vehicle in a way that drivers find undesirable. Active front steering (AFS) and active rear steering(ARS) can be used to tune the vehicle handling balance in the low to mid-range lateral-acceleration regime. Earlier work has shown that the use of AFS can reduce the interference observed using DYC alone. The levels of improvement achievable by coordinating AFS and ARS with DYC are quantified using open loop handling simulations tests by predicting the deceleration of the vehicle in an extreme manoeuvre. The results from these simulations are compared to assess the relative benefits of AFS and ARS when coordinated with DYC. The computer simulations are based on a four-degree of freedom vehicle model incorporating longitudinal, lateral, yaw, roll, and load transfer effects.


Sign in / Sign up

Export Citation Format

Share Document