autonomous electric vehicles
Recently Published Documents


TOTAL DOCUMENTS

99
(FIVE YEARS 75)

H-INDEX

12
(FIVE YEARS 7)

2022 ◽  
Vol 70 (2) ◽  
pp. 3333-3347
Author(s):  
P. Thamizhazhagan ◽  
M. Sujatha ◽  
S. Umadevi ◽  
K. Priyadarshini ◽  
Velmurugan Subbiah Parvathy ◽  
...  

Author(s):  
Wei Qi ◽  
Mengyi Sha ◽  
Shanling Li

Problem definition: We develop a crossdisciplinary analytics framework to understand citywide mobility-energy synergy. In particular, we investigate the potential of shared autonomous electric vehicles (SAEVs) for improving the self-sufficiency and resilience of solar-powered urban microgrids. Academic/practical relevance: Our work is motivated by the ever-increasing interconnection of energy and mobility service systems at the urban scale. We propose models and analytics to characterize the dynamics of the SAEV-microgrid service systems, which were largely overlooked by the literature on service operations and vehicle-grid integration (VGI) analysis. Methodology: We develop a space-time-energy network representation of SAEVs. Then, we formulate linear program models to incorporate an array of major operational decisions interconnecting the mobility and energy systems. To preventatively ensure microgrid resilience, we also propose an “N − 1” resilience-constrained fleet dispatch problem to cope with microgrid outages. Results: Combining eight data sources of New York City, our results show that 80,000 SAEVs in place of the current ride-sharing mobility assets can improve the microgrid self-sufficiency by 1.45% (benchmarked against the case without grid support) mainly via the spatial transfer of electricity, which complements conventional VGI. Scaling up the SAEV fleet size to 500,000 increases the microgrid self-sufficiency by 8.85% mainly through temporal energy transfer, which substitutes conventional VGI. We also quantify the potential and trade-offs of SAEVs for peak electricity import reduction and ramping mitigation. In addition, microgrid resilience can be enhanced by SAEVs, but the actual resilience level varies by microgrids and by the hour when grid contingency occurs. The SAEV fleet operator can further maintain the resilience of pivotal microgrid areas at their maximum achievable level with no more than a 1% increase in the fleet repositioning trip length. Managerial implications: Our models and findings demonstrate the potential in deepening the integration of urban mobility and energy service systems toward a smart-city future.


2021 ◽  
Vol 2021 ◽  
pp. 1-18
Author(s):  
Adorjan Kovacs ◽  
Istvan Vajk

This paper presents a novel approach for path-following control of a four-wheeled autonomous vehicle. The rear wheels of the vehicle are driven independently, all four wheels can be braked independently, and the front wheels are steered together. The proposed cascade structure consists of two convex optimization-based parts: one for path-following and another for the control allocation problem of the actuators. The control algorithm presents cost functions for the allocation problem focusing on safety. The proposed cost functions were examined and compared to former ones in a simulation environment. After all, the controller was tested in real-time test on a Lotus Evora test vehicle developed by ThyssenKrupp.


2021 ◽  
Author(s):  
Vishwajit Rahatal ◽  
Pratik More ◽  
Minesh Salunke ◽  
Sahil Makeshwar ◽  
Radhika D. Joshi

2021 ◽  
Vol 2021 ◽  
pp. 1-19
Author(s):  
Ning Wang ◽  
Jiahui Guo

The fusion of electricity, automation, and sharing is forming a new Autonomous Mobility-on-Demand (AMoD) system in current urban transportation, in which the Shared Autonomous Electric Vehicles (SAEVs) are a fleet to execute delivery, parking, recharging, and repositioning tasks automatically. To model the decision-making process of AMoD system and optimize multiaction dynamic dispatching of SAEVs over a long horizon, the dispatching problem of SAEVs is modeled according to Markov Decision Process (MDP) at first. Then two optimization models from short-sighted view and farsighted view based on combinatorial optimization theory are built, respectively. The former focuses on the instant and single-step reward, while the latter aims at the accumulative and multistep return. After that, the Kuhn–Munkres algorithm is set as the baseline method to solve the first model to achieve optimal multiaction allocation instructions for SAEVs, and the combination of deep Q-learning algorithm and Kuhn–Munkres algorithm is designed to solve the second model to realize the global optimization. Finally, a toy example, a macrosimulation of 1 month, and a microsimulation of 6 hours based on actual historical operation data are conducted. Results show that (1) the Kuhn–Munkres algorithm ensures the computational effectiveness in the large-scale real-time application of the AMoD system; (2) the second optimization model considering long-term return can decrease average user waiting time and achieve a 2.78% increase in total revenue compared with the first model; (3) and integrating combinatorial optimization theory with reinforcement learning theory is a perfect package for solving the multiaction dynamic dispatching problem of SAEVs.


2021 ◽  
Vol 13 (22) ◽  
pp. 12501
Author(s):  
Bijoy Saha ◽  
Mahmudur Rahman Fatmi

This paper presents how a post-secondary institution like University of British Columbia’s Okanagan (UBCO) campus can reduce its carbon footprint and be aligned with the government’s target through promoting virtual campus and autonomous electric vehicles (AEVs). Different virtual campus scenarios are developed: online classes only, working-from-home only, and a hybrid of both. In the case of AEVs, alternative penetration rates for levels 2 and 5 are considered. A total of 50 scenarios are tested using a sub-area transport simulation model for UBCO, which is extracted from the regional travel demand forecasting model. The results suggest that a 40% AEV penetration rate coupled with fully in-person classes reduces GHG by ~36% compared to the 2018-level, which will help UBCO to achieve their 2030 emission reduction target and be aligned with the provincial target. The 50% AEV and 10% hybrid virtual campus reduces emissions by ~48%, which is aligned with the 2040 provincial target. A fully virtual campus will help to reach the 2050 provincial target by reducing GHG by ~76%. The results further demonstrate that level 5 AEVs produce lesser emissions than level 2 at a lower AEV penetration rate for the fully in-person campus scenario. At higher penetration rates, level 5 performs better only if it is coupled with 10% of students, faculties and staffs attending virtual campus scenario.


2021 ◽  
Vol 15 (1) ◽  
pp. 201-209
Author(s):  
Peter Hogeveen ◽  
Maarten Steinbuch ◽  
Geert Verbong ◽  
Auke Hoekstra

Aims: This article explores the tank-to-wheel energy consumption of passenger transport at full adoption of fit-for-purpose shared and autonomous electric vehicles. Background: The energy consumption of passenger transport is increasing every year. Electrification of vehicles reduces their energy consumption significantly but is not the only disruptive trend in mobility. Shared fleets and autonomous driving are also expected to have large impacts and lead to fleets with one-person fit-for-purpose vehicles. The energy consumption of passenger transport in such scenarios is rarely discussed and we have not yet seen attempts to quantify it. Objective: The objective of this study is to quantify the tank-to-wheel energy consumption of passenger transport when the vehicle fleet is comprised of shared autonomous and electric fit-for-purpose vehicles and where cheap and accessible mobility leads to significantly increased mobility demand. Methodology: The approach consists of four steps. First, describing the key characteristics of a future mobility system with fit-for-purpose shared autonomous electric vehicles. Second, estimating the vehicle miles traveled in such a scenario. Third, estimating the energy use of the fit-for-purpose vehicles. And last, multiplying the mileages and energy consumptions of the vehicles and scaling the results with the population of the Netherlands. Results: Our findings show that the daily tank-to-wheel energy consumption from Dutch passenger transport in full adoption scenarios of shared autonomous electric vehicles ranges from 700 Wh to 2200 Wh per capita. This implies a reduction of 90% to 70% compared to the current situation. Conclusion: Full adoption of shared autonomous electric vehicles could increase the vehicle-miles-travelled and thus energy use of passenger transport by 30% to 150%. Electrification of vehicles reduces energy consumption by 75%. Autonomous driving has the potential of reducing the energy consumption by up to 40% and implementing one-person fit-for-purpose vehicles by another 50% to 60%. For our case study of the Netherlands, this means that the current 600 TJ/day that is consumed by passenger vehicles will be reduced to about 50 to 150 TJ/day at full adoption of SAEVs.


Sign in / Sign up

Export Citation Format

Share Document