Influence of parenteral iron preparations on non-transferrin bound iron uptake, the iron regulatory protein and the expression of ferritin and the divalent metal transporter DMT-1 in HepG2 human hepatoma cells

2003 ◽  
Vol 65 (12) ◽  
pp. 1973-1978 ◽  
Author(s):  
Barbara Scheiber-Mojdehkar ◽  
Brigitte Sturm ◽  
Liane Plank ◽  
Ingrid Kryzer ◽  
Hans Goldenberg
2018 ◽  
Vol 38 (43) ◽  
pp. 9142-9159 ◽  
Author(s):  
Veronica T. Cheli ◽  
Diara A. Santiago González ◽  
Leandro N. Marziali ◽  
Norma N. Zamora ◽  
María E. Guitart ◽  
...  

2009 ◽  
Vol 296 (4) ◽  
pp. G798-G804 ◽  
Author(s):  
Peter D. Buckett ◽  
Marianne Wessling-Resnick

Divalent metal transporter-1 (DMT1) is a divalent cation transporter that plays a key role in iron metabolism by mediating ferrous iron uptake across the small intestine. We have previously identified several small molecule inhibitors of iron uptake ( 4 ). Using a cell line that stably overexpresses DMT1, we screened the ability of these inhibitors to specifically block this transporter's activity. One compound, NSC306711, inhibited DMT1-mediated iron uptake in a reversible and competitive manner. This inhibitor is a polysulfonated dye containing two copper centers. Although one of these two sites could be chelated by Triethylenetetramine copper chelation did not perturb NSC306711 inhibition of DMT1 activity. Several other polysulfonated dyes with structural features similar to NSC306711 were identified as potential DMT1 transport inhibitors. This study characterizes important pharmacological tools that can be used to probe DMT1's mechanism of iron transport and its role in iron metabolism.


2009 ◽  
Vol 297 (6) ◽  
pp. C1567-C1575 ◽  
Author(s):  
Carly E. Herbison ◽  
Ketil Thorstensen ◽  
Anita C. G. Chua ◽  
Ross M. Graham ◽  
Peter Leedman ◽  
...  

Transferrin receptor (TFR) 1 and 2 are expressed in the liver; TFR1 levels are regulated by cellular iron levels while TFR2 levels are regulated by transferrin saturation. The aims of this study were to 1) determine the relative importance of TFR1 and TFR2 in transferrin-bound iron (TBI) uptake by HuH7 human hepatoma cells and 2) characterize the role of metal-transferrin complexes in the regulation of these receptors. TFR expression was altered by 1) incubation with metal-transferrin (Tf) complexes, 2) TFR1 and TFR2 small interfering RNA knockdown, and 3) transfection with a human TFR2 plasmid. TBI uptake was measured using 59Fe-125I-labeled Tf and mRNA and protein expression by real-time PCR and Western blot analysis, respectively. Fe2Tf, Co2Tf, and Mn2Tf increased TFR2 protein expression, indicating that the upregulation was not specifically regulated by iron-transferrin but also other metal-transferrins. In addition, Co2Tf and Mn2Tf upregulated TFR1, reduced ferritin, and increased hypoxia-inducible factor-1α protein expression, suggesting that TFR1 upregulation was due to a combination of iron deficiency and chemical hypoxia. TBI uptake correlated with changes in TFR1 but not TFR2 expression. TFR1 knockdown reduced iron uptake by 80% while TFR2 knockdown did not affect uptake. At 5 μM transferrin, iron uptake was not affected by combined TFR1 and TFR2 knockdown. Transfection with a hTFR2 plasmid increased TFR2 protein expression, causing a 15–20% increase in iron uptake and ferritin levels. This shows for the first time that TFR-mediated TBI uptake is mediated primarily via TFR1 but not TFR2 and that a high-capacity TFR-independent pathway exists in hepatoma cells.


Sign in / Sign up

Export Citation Format

Share Document