scholarly journals Detection of a pH-dependent conformational change in azurin by time-resolved phosphorescence

1996 ◽  
Vol 71 (4) ◽  
pp. 2138-2143 ◽  
Author(s):  
J.E. Hansen ◽  
D.G. Steel ◽  
A. Gafni
2004 ◽  
Vol 44 (supplement) ◽  
pp. S199
Author(s):  
M. Ohkouchi ◽  
K. Nagashima ◽  
Y. Yamada ◽  
M. Ikeguchi

eLife ◽  
2019 ◽  
Vol 8 ◽  
Author(s):  
Michael Puljung ◽  
Natascia Vedovato ◽  
Samuel Usher ◽  
Frances Ashcroft

The response of ATP-sensitive K+ channels (KATP) to cellular metabolism is coordinated by three classes of nucleotide binding site (NBS). We used a novel approach involving labeling of intact channels in a native, membrane environment with a non-canonical fluorescent amino acid and measurement (using FRET with fluorescent nucleotides) of steady-state and time-resolved nucleotide binding to dissect the role of NBS2 of the accessory SUR1 subunit of KATP in channel gating. Binding to NBS2 was Mg2+-independent, but Mg2+ was required to trigger a conformational change in SUR1. Mutation of a lysine (K1384A) in NBS2 that coordinates bound nucleotides increased the EC50 for trinitrophenyl-ADP binding to NBS2, but only in the presence of Mg2+, indicating that this mutation disrupts the ligand-induced conformational change. Comparison of nucleotide-binding with ionic currents suggests a model in which each nucleotide binding event to NBS2 of SUR1 is independent and promotes KATP activation by the same amount.


2022 ◽  
Author(s):  
Liqi Yao ◽  
Clay Clark

All caspases evolved from a common ancestor and subsequently developed into two general classes, inflammatory or apoptotic caspases. The caspase-hemoglobinase fold has been conserved throughout nearly one billion years of evolution and is utilized for both the monomeric and dimeric subfamilies of apoptotic caspases, called initiator and effector caspases, respectively. We compared the folding and assembly of procaspase-3b from zebrafish to that of human effector procaspases in order to examine the conservation of the folding landscape. Urea-induced equilibrium folding/unfolding of procaspase-3b showed a minimum three-state folding pathway, where the native dimer isomerizes to a partially folded dimeric intermediate, which then unfolds. A partially folded monomeric intermediate observed in the folding landscape of human procaspase-3 is not well-populated in zebrafish procaspase-3b. By comparing effector caspases from different species, we show that the effector procaspase dimer undergoes a pH-dependent conformational change, and that the conformational species in the folding landscape exhibit similar free energies. Together, the data show that the landscape for the caspase-hemoglobinase fold is conserved, yet it provides flexibility for species-specific stabilization or destabilization of folding intermediates resulting in changes in stability. The common pH-dependent conformational change in the native dimer, which yields an enzymatically inactive species, may provide an additional, albeit reversible, mechanism for controlling caspase activity in the cell.


FEBS Journal ◽  
2005 ◽  
Vol 272 (11) ◽  
pp. 2773-2783 ◽  
Author(s):  
Tomoaki Kato ◽  
Daizo Hamada ◽  
Takashi Fukui ◽  
Makoto Hayashi ◽  
Takeshi Honda ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document