chimeric protein
Recently Published Documents


TOTAL DOCUMENTS

851
(FIVE YEARS 172)

H-INDEX

72
(FIVE YEARS 5)

Pharmaceutics ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 144
Author(s):  
Ammar Tarar ◽  
Esmael M. Alyami ◽  
Ching-An Peng

Sinigrin is present in significant amounts in cruciferous vegetables. Epidemiological studies suggest that the consumption of such vegetables decreases the risk of cancer, and the effect is attributed mainly to allyl isothiocyanate (AITC), a hydrolysis product of sinigrin catalyzed by myrosinase. Anticancer activity of AITC has been previously investigated for several cancer models, but less attention was paid to delivering AITC on the target site. In this study, the gene sequences of core streptavidin (coreSA) and myrosinase (MYR) were cloned in a pET-30a(+) plasmid and transformed into BL21(DE3) E. coli competent cells. The MYR-coreSA chimeric protein was expressed and purified using immobilized metal affinity chromatography and further characterized by gel electrophoresis, Western blot, and enzyme activity assay. The purified MYR-coreSA chimeric protein was tethered on the outer membrane of biotinylated adenocarcinoma A549 cells and then treated with various concentrations of sinigrin. Our results showed that 20 µM of sinigrin inhibited the growth of A549 cells tethered with myrosinase by ~60% in 48 h. Furthermore, the levels of treated cells undertaken apoptosis were determined by Caspase-3/7 activation and Annexin-V. In summary, sinigrin harnessed like a prodrug catalyzed by myrosinase to the production of AITC, which induced cell apoptosis and arrested the growth of lung cancer cells.


2022 ◽  
Vol 21 (1) ◽  
Author(s):  
Barbara Oliveira Baptista ◽  
Ana Beatriz Lopes de Souza ◽  
Evelyn Kety Pratt Riccio ◽  
Cesare Bianco-Junior ◽  
Paulo Renato Rivas Totino ◽  
...  

Abstract Background The GMZ2.6c malaria vaccine candidate is a multi-stage Plasmodium falciparum chimeric protein which contains a fragment of the sexual-stage Pfs48/45-6C protein genetically fused to GMZ2, a fusion protein of GLURP and MSP-3, that has been shown to be well tolerated, safe and immunogenic in clinical trials performed in a malaria-endemic area of Africa. However, there is no data available on the antigenicity or immunogenicity of GMZ2.6c in humans. Considering that circulating parasites can be genetically distinct in different malaria-endemic areas and that host genetic factors can influence the immune response to vaccine antigens, it is important to verify the antigenicity, immunogenicity and the possibility of associated protection in individuals living in malaria-endemic areas with different epidemiological scenarios. Herein, the profile of antibody response against GMZ2.6c and its components (MSP-3, GLURP and Pfs48/45) in residents of the Brazilian Amazon naturally exposed to malaria, in areas with different levels of transmission, was evaluated. Methods This study was performed using serum samples from 352 individuals from Cruzeiro do Sul and Mâncio Lima, in the state of Acre, and Guajará, in the state of Amazonas. Specific IgG, IgM, IgA and IgE antibodies and IgG subclasses were detected by Enzyme-Linked Immunosorbent Assay. Results The results showed that GMZ2.6c protein was widely recognized by naturally acquired antibodies from individuals of the Brazilian endemic areas with different levels of transmission. The higher prevalence of individuals with antibodies against GMZ2.6c when compared to its individual components may suggest an additive effect of GLURP, MSP-3, and Pfs48/45 when inserted in a same construct. Furthermore, naturally malaria-exposed individuals predominantly had IgG1 and IgG3 cytophilic anti-GMZ2.6c antibodies, an important fact considering that the acquisition of anti-malaria protective immunity results from a delicate balance between cytophilic/non-cytophilic antibodies. Interestingly, anti-GMZ2.6c antibodies seem to increase with exposure to malaria infection and may contribute to parasite immunity. Conclusions The data showed that GMZ2.6c protein is widely recognized by naturally acquired antibodies from individuals living in malaria-endemic areas in Brazil and that these may contribute to parasite immunity. These data highlight the importance of GMZ2.6c as a candidate for an anti-malarial vaccine.


2022 ◽  
Vol 2022 ◽  
pp. 1-8
Author(s):  
Po-Hao Feng ◽  
Xiaoxu Wang ◽  
Louise Ferrall ◽  
T.-C. Wu ◽  
Chien-Fu Hung

Tumor antigen-specific T cell function is limited by immune tolerance in the tumor microenvironment. In the tumor microenvironment, tumor cells upregulate PD-L1 expression to promote T cell exhaustion by PD-1/PD-L1 interactions and undergo mutations to avoid being targeted by tumor antigen-specific T cells. Thus, tumor cells escape the immune surveillance by causing immune tolerance. We reason that a chimeric molecule made of a PD-L1-specific antibody linked to a cleavable antigenic peptide can target the antigenic peptide to the tumor microenvironment, resulting in the blockade of the PD-1/PD-L1 pathway and killing tumor cells through the coating of antigenic peptide. Here, we have generated a therapeutic chimeric protein containing the PD-L1 single-chain variable fragment (scFv) linked to a cleavable model cytotoxic T lymphocyte (CTL) epitope: E7 CTL peptide. Our study demonstrated that our chimeric protein (named PDL1-scFv-Fc-RE7) can target PD-L1-expressing tumor cells and enable E7 presentation by releasing cleavable E7 CTL peptide to coat tumor cells, resulting in tumor clearance by E7-specific CD8+ T cells. The presentation of the E7 peptide by cancer cells can then render tumor cells susceptible to the killing of preexisting E7-specific CD8+ T cells and contribute to tumor clearance. Our finding suggests a synergistic approach to not only enhance antigen-specific tumor clearance but also bypass immune tolerance.


2022 ◽  
Vol 162 ◽  
pp. 105341
Author(s):  
Nathalia C. Galvani ◽  
Amanda S. Machado ◽  
Daniela P. Lage ◽  
Vívian T. Martins ◽  
Daysiane de Oliveira ◽  
...  

2022 ◽  
Vol 141 ◽  
pp. 258-264
Author(s):  
Khosrow Zamani ◽  
Gholamreza Irajian ◽  
Abed Zahedi Bialvaei ◽  
Taghi Zahraei Salehi ◽  
Mohmood Khormali ◽  
...  

Author(s):  
Jinghua Xu ◽  
Jiuqing Wang ◽  
Aijun Liu ◽  
Yanqing Zhang ◽  
Xiang Gao

Type III secretion system (T3SS) is a multicomponent nanomachine and a critical virulence factor for a wide range of Gram-negative bacterial pathogens. It can deliver numbers of effectors into the host cell to facilitate the bacterial host infection.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Tanya Jayne ◽  
Morgan Newman ◽  
Lachlan Baer ◽  
Michael Lardelli

Abstract Objective NGFR/p75NTR and NRADD/NRH proteins are closely related structurally and are encoded by genes that arose from a duplication event early in vertebrate evolution. The transmembrane domain (TMD) of NGFR is cleaved by γ-secretase but there is conflicting data around the susceptibility to γ-secretase cleavage of NRADD proteins. If NGFR and NRADD show differential susceptibility to γ-secretase, then they can be used to dissect the structural constraints determining substrate susceptibility. We sought to test this differential susceptibility. Results We developed labelled, lumenally-truncated forms of zebrafish Ngfrb and Nradd and a chimeric protein in which the TMD of Nradd was replaced with the TMD of Ngfrb. We expressed these in zebrafish embryos to test their susceptibility to γ-secretase cleavage by monitoring their stability using western immunoblotting. Inhibition of γ-secretase activity using DAPT increased the stability of only the Ngfrb construct. Our results support that only NGFR is cleaved by γ-secretase. Either NGFR evolved γ-secretase-susceptibility since its creation by gene duplication, or NRADD evolved to be refractory to γ-secretase. Protein structure outside of the TMD of NGFR is likely required for susceptibility to γ-secretase.


Author(s):  
Fereshte Hazrati ◽  
Massoud Saidijam ◽  
Yaghoub Ahmadyousefi ◽  
Fatemeh Nouri ◽  
Hamidreza Ghadimipour ◽  
...  

2021 ◽  
Vol 22 (22) ◽  
pp. 12178
Author(s):  
Bijay P. Dhungel ◽  
Geoffray Monteuuis ◽  
Caroline Giardina ◽  
Mehdi S. Tabar ◽  
Yue Feng ◽  
...  

Chimeric RNAs are often associated with chromosomal rearrangements in cancer. In addition, they are also widely detected in normal tissues, contributing to transcriptomic complexity. Despite their prevalence, little is known about the characteristics and functions of chimeric RNAs. Here, we examine the genetic structure and biological roles of CLEC12A-MIR223HG, a novel chimeric transcript produced by the fusion of the cell surface receptor CLEC12A and the miRNA-223 host gene (MIR223HG), first identified in chronic myeloid leukemia (CML) patients. Surprisingly, we observed that CLEC12A-MIR223HG is not just expressed in CML, but also in a variety of normal tissues and cell lines. CLEC12A-MIR223HG expression is elevated in pro-monocytic cells resistant to chemotherapy and during monocyte-to-macrophage differentiation. We observed that CLEC12A-MIR223HG is a product of trans-splicing rather than a chromosomal rearrangement and that transcriptional activation of CLEC12A with the CRISPR/Cas9 Synergistic Activation Mediator (SAM) system increases CLEC12A-MIR223HG expression. CLEC12A-MIR223HG translates into a chimeric protein, which largely resembles CLEC12A but harbours an altered C-type lectin domain altering key disulphide bonds. These alterations result in differences in post-translational modifications, cellular localization, and protein–protein interactions. Taken together, our observations support a possible involvement of CLEC12A-MIR223HG in the regulation of CLEC12A function. Our workflow also serves as a template to study other uncharacterized chimeric RNAs.


PLoS ONE ◽  
2021 ◽  
Vol 16 (11) ◽  
pp. e0259353
Author(s):  
Rhogerry Deshycka ◽  
Valentino Sudaryo ◽  
Nai-Jia Huang ◽  
Yushu Xie ◽  
Liyan Y. Smeding ◽  
...  

Low plasma levels of Proprotein Convertase Subtilisin/Kexin 9 (PCSK9) are associated with decreased low-density lipoprotein (LDL) cholesterol and a reduced risk of cardiovascular disease. PCSK9 binds to the epidermal growth factor-like repeat A (EGFA) domain of LDL receptors (LDLR), very low-density lipoprotein receptors (VLDLR), apolipoprotein E receptor 2 (ApoER2), and lipoprotein receptor–related protein 1 (LRP1) and accelerates their degradation, thus acting as a key regulator of lipid metabolism. Antibody and RNAi—based PCSK9 inhibitor treatments lower cholesterol and prevent cardiovascular incidents in patients, but their high-cost hampers market penetration. We sought to develop a safe, long-term and one-time solution to treat hyperlipidemia. We created a cDNA encoding a chimeric protein in which the extracellular N- terminus of red blood cells (RBCs) specific glycophorin A was fused to the LDLR EGFA domain and introduced this gene into mouse bone marrow hematopoietic stem and progenitor cells (HSPCs). Following transplantation into irradiated mice, the animals produced RBCs with the EGFA domain (EGFA-GPA RBCs) displayed on their surface. These animals showed significantly reduced plasma PCSK9 (66.5% decrease) and reduced LDL levels (40% decrease) for as long as 12 months post-transplantation. Furthermore, the EGFA- GPA mice remained lean for life and maintained normal body weight under a high-fat diet. Hematopoietic stem cell gene therapy can generate red blood cells expressing an EGFA—glycophorin A chimeric protein as a practical and long-term strategy for treating chronic hyperlipidemia and obesity.


Sign in / Sign up

Export Citation Format

Share Document