secretion system
Recently Published Documents


TOTAL DOCUMENTS

3032
(FIVE YEARS 802)

H-INDEX

118
(FIVE YEARS 13)

2022 ◽  
Author(s):  
Morwan M Osman ◽  
Jonthan K Shanahan ◽  
Frances Chu ◽  
Kevin Takaki ◽  
Malte Pinckert ◽  
...  

Mycobacterium tuberculosis and its close relative Mycobacterium marinum infect macrophages and induce the formation of granulomas, organized macrophage-rich immune aggregates. These mycobacterial pathogens can accelerate and co-opt granuloma formation for their benefit, using the specialized secretion system ESX-1, a key virulence determinant. ESX-1-mediated virulence is attributed to the damage it causes to the membranes of macrophage phagosomal compartments, within which the bacteria reside. This phagosomal damage, in turn, has been attributed to the membranolytic activity of ESAT-6, the major secreted substrate of ESX-1. However, mutations that perturb ESAT-6 membranolytic activity often result in global impairment of ESX-1 secretion. This has precluded an understanding of the causal and mechanistic relationships between ESAT-6 membranolysis and ESX-1-mediated virulence. Here, we identify two conserved residues in the unstructured C-terminal tail of ESAT-6 required for phagosomal damage, granuloma formation and virulence. Importantly, these ESAT-6 mutants have near-normal levels of secretion, far higher than the minimal threshold we establish is needed for ESX-1-mediated virulence early in infection. Unexpectedly, these loss-of-function ESAT-6 mutants retain the ability to lyse acidified liposomes. Thus, ESAT-6 virulence functions in vivo can be uncoupled from this in vitro surrogate assay. These uncoupling mutants highlight an enigmatic functional domain of ESAT-6 and provide key tools to investigate the mechanism of phagosomal damage and virulence.


BMC Biology ◽  
2022 ◽  
Vol 20 (1) ◽  
Author(s):  
Lin Chou ◽  
Yu-Chen Lin ◽  
Mindia Haryono ◽  
Mary Nia M. Santos ◽  
Shu-Ting Cho ◽  
...  

Abstract Background Many named species as defined in current bacterial taxonomy correspond to species complexes. Uncertainties regarding the organization of their genetic diversity challenge research efforts. We utilized the Agrobacterium tumefaciens species complex (a.k.a. Agrobacterium biovar 1), a taxon known for its phytopathogenicity and applications in transformation, as a study system and devised strategies for investigating genome diversity and evolution of species complexes. Results We utilized 35 genome assemblies, including 14 newly generated ones, to achieve a phylogenetically balanced sampling of A. tumefaciens. Our genomic analysis suggested that the 10 genomospecies described previously are distinct biological species and supported a quantitative guideline for species delineation. Furthermore, our inference of gene content and core-genome phylogeny allowed for investigations of genes critical in fitness and ecology. For the type VI secretion system (T6SS) involved in interbacterial competition and thought to be conserved, we detected multiple losses and one horizontal gene transfer. For the tumor-inducing plasmids (pTi) and pTi-encoded type IV secretion system (T4SS) that are essential for agrobacterial phytopathogenicity, we uncovered novel diversity and hypothesized their involvement in shaping this species complex. Intriguingly, for both T6SS and T4SS, genes encoding structural components are highly conserved, whereas extensive diversity exists for genes encoding effectors and other proteins. Conclusions We demonstrate that the combination of a phylogeny-guided sampling scheme and an emphasis on high-quality assemblies provides a cost-effective approach for robust analysis in evolutionary genomics. We show that the T6SS VgrG proteins involved in specific effector binding and delivery can be classified into distinct types based on domain organization. The co-occurrence patterns of VgrG-associated domains and the neighboring genes that encode different chaperones/effectors can be used to infer possible interacting partners. Similarly, the associations between plant host preference and the pTi type among these strains can be used to infer phenotype-genotype correspondence. Our strategies for multi-level investigations at scales that range from whole genomes to intragenic domains and phylogenetic depths from between- to within-species are applicable to other bacteria. Furthermore, modularity observed in the molecular evolution of genes and domains is useful for inferring functional constraints and informing experimental works.


Vaccines ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 111
Author(s):  
Everett Webster ◽  
Kyra W. Seiger ◽  
Susan B. Core ◽  
Amanda L. Collar ◽  
Hannah Knapp-Broas ◽  
...  

An effective vaccine against Chlamydia trachomatis is urgently needed as infection rates continue to rise and C. trachomatis causes reproductive morbidity. An obligate intracellular pathogen, C. trachomatis employs a type 3 secretion system (T3SS) for host cell entry. The tip of the injectosome is composed of the protein CT584, which represents a potential target for neutralization with vaccine-induced antibody. Here, we investigate the immunogenicity and efficacy of a vaccine made of CT584 epitopes coupled to a bacteriophage virus-like particle (VLP), a novel platform for Chlamydia vaccines modeled on the success of HPV vaccines. Female mice were immunized intramuscularly, challenged transcervically with C. trachomatis, and assessed for systemic and local antibody responses and bacterial burden in the upper genital tract. Immunization resulted in a 3-log increase in epitope-specific IgG in serum and uterine homogenates and in the detection of epitope-specific IgG in uterine lavage at low levels. By contrast, sera from women infected with C. trachomatis and virgin controls had similarly low titers to CT584 epitopes, suggesting these epitopes are not systemically immunogenic during natural infection but can be rendered immunogenic by the VLP platform. C. trachomatis burden in the upper genital tract of mice varied after active immunization, yet passive protection was achieved when immune sera were pre-incubated with C. trachomatis prior to inoculation into the genital tract. These data demonstrate the potential for antibody against the T3SS to contribute to protection against C. trachomatis and the value of VLPs as a novel platform for C. trachomatis vaccines.


Author(s):  
Dhana G. Gorasia ◽  
Ignacio Lunar Silva ◽  
Catherine A. Butler ◽  
Maïalène Chabalier ◽  
Thierry Doan ◽  
...  

The T9SS is a newly identified protein secretion system of the Fibrobacteres - Chlorobi - Bacteroidetes superphylum used by pathogens associated with diseases of humans, fish, and poultry for the secretion and cell surface attachment of virulence factors. The T9SS comprises three known modules: (i) the trans-envelope core module comprising the PorL/M motor and the PorK/N ring, (ii) the outer membrane Sov translocon, and (iii) the cell surface attachment complex.


2022 ◽  
Author(s):  
Matthew Martinez ◽  
William David Chen ◽  
Marta Cova ◽  
Petra Andrea Molnár ◽  
Shrawan Kumar Mageswaran ◽  
...  

Apicomplexan parasites secrete the contents of rhoptries into host cells to permit their invasion and establishment of an infectious niche. The rhoptry secretory apparatus (RSA), which is critical for rhoptry secretion, was recently discovered in Toxoplasma and Cryptosporidium. It is positioned at the cell apex and associates with an enigmatic apical vesicle (AV), which docks one or two rhoptries at the site of exocytosis. The interplay among the rhoptries, the AV, and the parasite plasma membrane for secretion remains unclear. Moreover, it is unknown if a similar machinery exists in the deadly malaria parasite Plasmodium falciparum. In this study, we use in situ cryo-electron tomography to investigate the rhoptry secretion system in P. falciparum merozoites. We identify the presence of an RSA at the cell apex and a morphologically distinct AV docking the tips of the two rhoptries to the RSA. We also discover two new organizations: one in which the AV is absent with one of the two rhoptry tips docks directly to the RSA, and a second in which the two rhoptries fuse together and the common tip docks directly to the RSA. Interestingly, rhoptries among the three states show no significant difference in luminal volume and density, suggesting that the exocytosis of rhoptry contents has not yet occurred, and that these different organizations likely represent sequential states leading to secretion. Using subtomogram averaging, we reveal different conformations of the RSA structure corresponding to each state, including the opening of a gate-like density in the rhoptry-fused state. These conformational changes of the RSA uncover structural details of a priming process for major rhoptry secretion, which likely occur after initial interaction with a red blood cell. Our results highlight a previously unknown step in the process of rhoptry secretion and indicate a regulatory role for the conserved apical vesicle in host invasion by apicomplexan parasites.


2022 ◽  
Author(s):  
Stephen Garrett ◽  
Giuseppina Mariano ◽  
Tracy Palmer

The Type VII secretion system (T7SS) is found in many Gram-positive firmicutes and secretes protein toxins that mediate bacterial antagonism. Two T7SS toxins have been identified in Staphylococcus aureus, EsaD a nuclease toxin that is counteracted by the EsaG immunity protein, and TspA, which has membrane depolarising activity and is neutralised by TsaI. Both toxins are polymorphic, and strings of non-identical esaG and tsaI immunity genes are encoded in all S. aureus strains. During genome sequence analysis of closely related S. aureus strains we noted that there had been a deletion of six consecutive esaG copies in one lineage. To investigate this further, we analysed the sequences of the tandem esaG genes and their encoded proteins. We identified three blocks of high sequence homology shared by all esaG genes, and identified evidence of extensive recombination events between esaG paralogues facilitated through these conserved sequence blocks. Recombination between these blocks accounts for loss of esaG genes from S. aureus genomes. TipC, an immunity protein for the TelC lipid II phosphatase toxin secreted by the streptococcal T7SS, is also encoded by multiple gene paralogues. Two blocks of high sequence homology locate to the 5-prime and 3-prime end of tipC genes, and we found strong evidence for recombination between tipC paralogues encoded by Streptococcus mitis BCC08. By contrast, we found only a single block of homology across tsaI genes, and little evidence for intergenic recombination within this gene family. We conclude that homologous recombination is one of the drivers for the evolution of T7SS immunity gene clusters.


2022 ◽  
Vol 18 (1) ◽  
pp. e1010170
Author(s):  
Dan Wang ◽  
Xinxin Zhang ◽  
Liwen Yin ◽  
Qi Liu ◽  
Zhaoli Yu ◽  
...  

Pseudomonas aeruginosa is an important opportunistic pathogen capable of causing variety of infections in humans. The type III secretion system (T3SS) is a critical virulence determinant of P. aeruginosa in the host infections. Expression of the T3SS is regulated by ExsA, a master regulator that activates the expression of all known T3SS genes. Expression of the exsA gene is controlled at both transcriptional and posttranscriptional levels. Here, we screened a P. aeruginosa transposon (Tn5) insertional mutant library and found rplI, a gene coding for the ribosomal large subunit protein L9, to be a repressor for the T3SS gene expression. Combining real-time quantitative PCR (qPCR), western blotting and lacZ fusion assays, we show that RplI controls the expression of exsA at the posttranscriptional level. Further genetic experiments demonstrated that RplI mediated control of the exsA translation involves 5’ untranslated region (5’ UTR). A ribosome immunoprecipitation assay and qPCR revealed higher amounts of a 24 nt fragment from exsA mRNA being associated with ribosomes in the ΔrplI mutant. An interaction between RplI and exsA mRNA harboring its 24 nt, but not 12 nt, 5’ UTR was confirmed by RNA Gel Mobility Shift and Microscale Thermophoresis assays. Overall, this study identifies the ribosomal large subunit protein L9 as a novel T3SS repressor that inhibits ExsA translation in P. aeruginosa.


2022 ◽  
Vol 18 (1) ◽  
pp. e1010182
Author(s):  
Patrick Günther ◽  
Dennis Quentin ◽  
Shehryar Ahmad ◽  
Kartik Sachar ◽  
Christos Gatsogiannis ◽  
...  

The type VI secretion system (T6SS) is a widespread protein export apparatus found in Gram-negative bacteria. The majority of T6SSs deliver toxic effector proteins into competitor bacteria. Yet, the structure, function, and activation of many of these effectors remains poorly understood. Here, we present the structures of the T6SS effector RhsA from Pseudomonas protegens and its cognate T6SS spike protein, VgrG1, at 3.3 Å resolution. The structures reveal that the rearrangement hotspot (Rhs) repeats of RhsA assemble into a closed anticlockwise β-barrel spiral similar to that found in bacterial insecticidal Tc toxins and in metazoan teneurin proteins. We find that the C-terminal toxin domain of RhsA is autoproteolytically cleaved but remains inside the Rhs ‘cocoon’ where, with the exception of three ordered structural elements, most of the toxin is disordered. The N-terminal ‘plug’ domain is unique to T6SS Rhs proteins and resembles a champagne cork that seals the Rhs cocoon at one end while also mediating interactions with VgrG1. Interestingly, this domain is also autoproteolytically cleaved inside the cocoon but remains associated with it. We propose that mechanical force is required to remove the cleaved part of the plug, resulting in the release of the toxin domain as it is delivered into a susceptible bacterial cell by the T6SS.


2022 ◽  
Vol 12 ◽  
Author(s):  
Jin Li ◽  
Wei-wei Hu ◽  
Guo-xin Qu ◽  
Xiao-rong Li ◽  
Yi Xiang ◽  
...  

Burkholderia thailandensis is a clinically underestimated conditional pathogen in the genus Burkholderia, the pathogenicity of the infection caused by B. thailandensis remains poorly understood. According to previous studies, Type-VI secretion system (T6SS) is a protein secreting device widely existing in Gram-negative bacilli. Valine-glycine repeat protein G (VgrG) is not only an important component of T6SS, but also a virulence factor of many Gram-negative bacilli. In one of our previous studies, a unique T6SS vgrG gene (vgrG2 gene) was present in a virulent B. thailandensis strain BPM (BPM), but not in the relatively avirulent B. thailandensis strain E264 (E264). Meanwhile, transcriptome analysis of BPM and E264 showed that the vgrG2 gene was strongly expressed in BPM, but not in E264. Therefore, we identified the function of the vgrG2 gene by constructing the mutant and complemented strains in this study. In vitro, the vgrG2 gene was observed to be involved in the interactions with host cells. The animal model experiment showed that the deletion of vgrG2 gene significantly led to the decrease in the lethality of BPM and impaired its ability to trigger host immune response. In conclusion, our study provides a new perspective for studying the pathogenicity of B. thailandensis and lays the foundation for discovering the potential T6SS effectors.


Author(s):  
Ameeq Ul Mushtaq ◽  
Jörgen Ådén ◽  
Athar Alam ◽  
Anders Sjöstedt ◽  
Gerhard Gröbner

AbstractThe Hsp100 family member ClpB is a protein disaggregase which solubilizes and reactivates stress-induced protein aggregates in cooperation with the DnaK/Hsp70 chaperone system. In the pathogenic bacterium Francisella tularensis, ClpB is involved in type VI secretion system (T6SS) disassembly through depolymerization of the IglA-IglB sheath. This leads to recycling and reassembly of T6SS components and this process is essential for the virulence of the bacterium. Here we report the backbone chemical shift assignments and 15N relaxation-based backbone dynamics of the N-terminal substrate-binding domain of ClpB (1-156).


Sign in / Sign up

Export Citation Format

Share Document