Preβ1-high-density lipoprotein (preβ1-HDL) concentration can change with low-density lipoprotein-cholesterol (LDL-C) concentration independent of cholesteryl ester transfer protein (CETP)

2000 ◽  
Vol 292 (1-2) ◽  
pp. 69-80 ◽  
Author(s):  
Takashi Miida ◽  
Kazuyuki Ozaki ◽  
Toru Murakami ◽  
Takayuki Kashiwa ◽  
Toru Yamadera ◽  
...  
2019 ◽  
Vol 8 ◽  
pp. 204800401986973 ◽  
Author(s):  
Martin B Whyte

Epidemiological data strongly support the inverse association between high-density lipoprotein cholesterol concentration and cardiovascular risk. Over the last three decades, pharmaceutical strategies have been partially successful in raising high-density lipoprotein cholesterol concentration, but clinical outcomes have been disappointing. A recent therapeutic class is the cholesteryl ester transfer protein inhibitor. These drugs can increase circulating high-density lipoprotein cholesterol levels by inhibiting the exchange of cholesteryl ester from high-density lipoprotein for triacylglycerol in larger lipoproteins, such as very low-density lipoprotein and low-density lipoprotein. Recent trials of these agents have not shown clinical benefit. This article will review the evidence for cardiovascular risk associated with high-density lipoprotein cholesterol and discuss the implications of the trial data for cholesteryl ester transfer protein inhibitors.


1997 ◽  
Vol 92 (5) ◽  
pp. 473-479 ◽  
Author(s):  
Gregory D. Sloop ◽  
David W. Garber

1. Increased blood or plasma viscosity has been observed in almost all conditions associated with accelerated atherosclerosis. Cognizant of the enlarging body of evidence implicating increased viscosity in atherogenesis, we hypothesize that the effects of low-density lipoprotein and high-density lipoprotein on blood viscosity correlate with their association with risk of atherosclerosis. 2. Blood viscometry was performed on samples from 28 healthy, non-fasting adult volunteers using a capillary viscometer. Data were correlated with haematocrit, fibrinogen, serum viscosity, total cholesterol, high-density lipoprotein-cholesterol, triglycerides and calculated low-density lipoprotein-cholesterol. 3. Low-density lipoprotein-cholesterol was more strongly correlated with blood viscosity than was total cholesterol (r = 0.4149, P = 0.0281, compared with r = 0.2790, P = 0.1505). High-density lipoprotein-cholesterol levels were inversely associated with blood viscosity (r = −0.4018, P = 0.0341). 4. To confirm these effects, viscometry was performed on erythrocytes, suspended in saline, which had been incubated in plasma of various low-density lipoprotein/high-density lipoprotein ratios. Viscosity correlated directly with low-density lipoprotein/high-density lipoprotein ratio (n = 23, r = 0.8561, P < 0.01). 5. Low-density lipoprotein receptor occupancy data suggests that these effects on viscosity are mediated by erythrocyte aggregation. 6. These results demonstrate that the effects of low-density lipoprotein and high-density lipoprotein on blood viscosity in healthy subjects correlate with their association with risk of atherosclerosis. These effects on viscosity may play a role in atherogenesis by modulating the dwell or residence time of atherogenic particles in the vicinity of the endothelium.


Sign in / Sign up

Export Citation Format

Share Document