KI of a circumferential crack emanating from an ellipsoidal cavity obtained by the crack tip stress method in FEM

2004 ◽  
Vol 71 (4-6) ◽  
pp. 579-585 ◽  
Author(s):  
H. Nisitani ◽  
T. Teranishi
2004 ◽  
Vol 261-263 ◽  
pp. 669-674
Author(s):  
Hironobu Nisitani ◽  
T. Teranishi ◽  
K. Fukuyama

It is important to know the stress intensity factor of a circumferential crack emanating from the cavity, because in some cases the fatigue strength of metals is affected by the existence of an internal cavity or an inclusion. Recently a method for calculating the highly accurate values of stress intensity factors was proposed by H. Nisitani, based on the usefulness of the stress values at a crack tip calculated by FEM. This method is called the crack tip stress method. In this study, the crack tip stress method is applied to the problem of an infinite solid having two cavities with a circumferential crack emanating from the cavity subjected to tension. The accuracy of the crack tip stress method was discussed based on some values obtained by the body force method. Moreover, a simple method for calculating the stress intensity factor of this problem was presented.


Author(s):  
G. Shen ◽  
R. Bouchard ◽  
J. A. Gianetto ◽  
W. R. Tyson

Stress fields and constraint parameters (Q and A2) of circumferentially-cracked high strength pipe in displacement-controlled tension are compared with those of small-scale single-edge notched samples tested in tension (SE(T)) and bending (SE(B)). The factors affecting transferability of fracture toughness (J-resistance) data from small-scale laboratory tests to cracked high strength pipe are discussed. The crack-tip stress field is of similar form for a circumferential crack in a pipe and a SE(T) test specimen, while for a SE(B) specimen there is a significant gradient in the crack-tip stress field. Hence, the fracture toughness can be characterized by only two parameters (J and Q or J and A2) for tension-loaded pipe and SE(T) tests, but for SE(B) tests one more parameter is needed to describe the bending term. It is concluded that the constraint in a SE(T) test with ratio of span between load points to width H/W = 10 provides a reasonable match to that for a circumferential crack in a pipe subjected to tensile loading.


1999 ◽  
Vol 15 (3) ◽  
pp. 275-284 ◽  
Author(s):  
C Thaulow ◽  
Z.L Zhang ◽  
M Hauge ◽  
W Burget ◽  
D Memhard

2010 ◽  
Vol 168-170 ◽  
pp. 1252-1255
Author(s):  
Zhong Guo Zhang ◽  
Ya Dong Bian ◽  
Bin Gao

The crack tip stress field of rock is analyzed under blast loading, and the crack arrest criterion, the conditions of rock crack initiation and crack extension are presented in this paper. The study will help the design of maintaining the stability of stope drift active workings.


Sign in / Sign up

Export Citation Format

Share Document