Air filtration: Green and clean – how to improve indoor air quality

2006 ◽  
Vol 43 (9) ◽  
pp. 24-27 ◽  
Author(s):  
Dave Matela
2021 ◽  
Vol 9 ◽  
Author(s):  
Gilliane Davison ◽  
Karoline K. Barkjohn ◽  
Gayle S. W. Hagler ◽  
Amara L. Holder ◽  
Sarah Coefield ◽  
...  

Effective strategies to reduce indoor air pollutant concentrations during wildfire smoke events are critically needed. Worldwide, communities in areas prone to wildfires may suffer from annual smoke exposure events lasting from days to weeks. In addition, there are many areas of the world where high pollution events are common and where methods employed to reduce exposure to pollution may have relevance to wildfire smoke pollution episodes and vice versa. This article summarizes a recent virtual meeting held by the United States Environmental Protection Agency (EPA) to share research, experiences, and other information that can inform best practices for creating clean air spaces during wildland fire smoke events. The meeting included presentations on the public health impacts of wildland fire smoke; public health agencies' experiences and resilience efforts; and methods to improve indoor air quality, including the effectiveness of air filtration methods [e.g., building heating ventilation and air conditioning (HVAC) systems and portable, free-standing air filtration systems]. These presentations and related research indicate that filtration has been demonstrated to effectively improve indoor air quality during high ambient air pollution events; however, several research questions remain regarding the longevity and maintenance of filtration equipment during and after smoke events, effects on the pollution mixture, and degree to which adverse health effects are reduced.


2015 ◽  
Vol 17 (2) ◽  
pp. 316-325 ◽  
Author(s):  
Paul T. J. Scheepers ◽  
Jeroen J. de Hartog ◽  
Judith Reijnaerts ◽  
Gwendolyn Beckmann ◽  
Rob Anzion ◽  
...  

In situ testing in a primary school classroom showed that combining air filtration with a carpet reduced particulate matter concentrations.


2013 ◽  
Vol 2013 (1) ◽  
pp. 3427
Author(s):  
Paul T.J. Scheepers ◽  
Jeroen J. de Hartog ◽  
Judith Reijnaerts ◽  
Gwendolyn Beckmann ◽  
Rob B.M. Anzion ◽  
...  

2021 ◽  
Vol 2042 (1) ◽  
pp. 012133
Author(s):  
Heinz Gattringer ◽  
Nektaria Efthymiou-Charalampopoulou ◽  
Egmont Lines ◽  
Maria Kolokotroni

Abstract Plants have the ability to absorb and degrade VOCs (volatile organic compounds). Foliage can intercept particulate matter (PM) and thus, help to reduce its concentration in the air. Plants can be used as filters in indoor conditions adding an ecosystem service to the decorative purpose. A plant-based air filtration system that actively improves indoor air quality has been developed and installed at a students’ residence at Brunel University, London. This unit replaces an existing window with a mini-greenhouse containing upwards of 30 plants and is connected to an air circuit to treat the indoor air. A monitoring plan is collecting data on the performance of the solution until at least the end of 2021. Preliminary results are presented, which indicate good effectiveness at reducing tVOCs and lower efficiency at reducing PM.


Author(s):  
Oriana Motta ◽  
Concetta Pironti ◽  
Maria Ricciardi ◽  
Chiara Rostagno ◽  
Ezio Bolzacchini ◽  
...  

AbstractThe most important parameter to obtain an appropriate preservation condition of museum environments concerns the indoor air quality. The exposure of artwork and materials to gaseous and particulate pollutants introduced by visitors and either indoor or outdoor sources contributes to their decay. In this work, we evaluated the possible monitoring of the visitors’ influence using the stable carbon isotopic ratio of CO2 and the concentration of NH3 as a real-time tool. The study was done in the Refectory of Santa Maria delle Grazie (Milan, Italy) which houses one of the most important paintings of Leonardo da Vinci, the Last Supper, and had more than 400,000 visitors in 2019. The results confirmed a good correlation between the presence of tourists inside the museum and the variation of δ13C value during the visits and the closure of the museum. The variation of indoor atmospheric δ13C was influenced by the presence of visitors in the Refectory and delineates the way done from the entrance to the exit. In the same way, the concentration of NH3 was influenced by the presence of visitors and confirmed the role of this one on preservation methodology for indoor air quality in the museum. This new methodology can be used as a supplemental and non-invasive tool to help in calibrating microclimatic conditions through the ventilation rate and air filtration systems in the museum and to manage the number of visitors per turn.


Sign in / Sign up

Export Citation Format

Share Document