P21-Activated Kinase (PAK)-Mediated Phosphorylation of Protein Kinase D1 (PKD1) Triggers Membrane Dissociation of PKD1 in Intestinal Epithelial Cells: Identification of a Novel Mechanism in the Regulation of PKD1 Localization

2017 ◽  
Vol 152 (5) ◽  
pp. S1037
Author(s):  
Jen-Kuan Chang ◽  
James Sinnett-Smith ◽  
Rodrigo Jacamo ◽  
Steven H. Young ◽  
Osvaldo Rey ◽  
...  
2012 ◽  
Vol 303 (3) ◽  
pp. G356-G366 ◽  
Author(s):  
Steven H. Young ◽  
Nora Rozengurt ◽  
James Sinnett-Smith ◽  
Enrique Rozengurt

We have examined the role of protein kinase D1 (PKD1) signaling in intestinal epithelial cell migration. Wounding monolayer cultures of intestinal epithelial cell line IEC-18 or IEC-6 induced rapid PKD1 activation in the cells immediately adjacent to the wound edge, as judged by immunofluorescence microscopy with an antibody that detects the phosphorylated state of PKD1 at Ser916, an autophosphorylation site. An increase in PKD1 phosphorylation at Ser916 was evident as early as 45 s after wounding, reached a maximum after 3 min, and persisted for ≥15 min. PKD1 autophosphorylation at Ser916 was prevented by the PKD family inhibitors kb NB 142-70 and CRT0066101. A kb NB 142-70-sensitive increase in PKD autophosphorylation was also elicited by wounding IEC-6 cells. Using in vitro kinase assays after PKD1 immunoprecipitation, we corroborated that wounding IEC-18 cells induced rapid PKD1 catalytic activation. Further results indicate that PKD1 signaling is required to promote migration of intestinal epithelial cells into the denuded area of the wound. Specifically, treatment with kb NB 142-70 or small interfering RNAs targeting PKD1 markedly reduced wound-induced migration in IEC-18 cells. To test whether PKD1 promotes migration of intestinal epithelial cells in vivo, we used transgenic mice that express elevated PKD1 protein in the small intestinal epithelium. Enterocyte migration was markedly increased in the PKD1 transgenic mice. These results demonstrate that PKD1 activation is one of the early events initiated by wounding a monolayer of intestinal epithelial cells and indicate that PKD1 signaling promotes the migration of these cells in vitro and in vivo.


2014 ◽  
Vol 306 (10) ◽  
pp. C961-C971 ◽  
Author(s):  
James Sinnett-Smith ◽  
Yang Ni ◽  
Jia Wang ◽  
Ming Ming ◽  
Steven H. Young ◽  
...  

We examined whether class IIa histone deacetylases (HDACs) play a role in mitogenic signaling mediated by protein kinase D1 (PKD1) in IEC-18 intestinal epithelial cells. Our results show that class IIa HDAC4, HDAC5, and HDAC7 are prominently expressed in these cells. Stimulation with ANG II, a potent mitogen for IEC-18 cells, induced a striking increase in phosphorylation of HDAC4 at Ser246 and Ser632, HDAC5 at Ser259 and Ser498, and HDAC7 at Ser155. Treatment with the PKD family inhibitors kb NB 142-70 and CRT0066101 or small interfering RNA-mediated knockdown of PKD1 prevented ANG II-induced phosphorylation of HDAC4, HDAC5, and HDAC7. A variety of PKD1 activators in IEC-18 cells, including vasopressin, lysophosphatidic acid, and phorbol esters, also induced HDAC4, HDAC5, and HDAC7 phosphorylation. Using endogenously and ectopically expressed HDAC5, we show that PKD1-mediated phosphorylation of HDAC5 induces its nuclear extrusion into the cytoplasm. In contrast, HDAC5 with Ser259 and Ser498 mutated to Ala was localized to the nucleus in unstimulated and stimulated cells. Treatment of IEC-18 cells with specific inhibitors of class IIa HDACs, including MC1568 and TMP269, prevented cell cycle progression, DNA synthesis, and proliferation induced in response to G protein-coupled receptor/PKD1 activation. The PKD1-class IIa HDAC axis also functions in intestinal epithelial cells in vivo, since an increase in phosphorylation of HDAC4/5 and HDAC7 was demonstrated in lysates of crypt cells from PKD1 transgenic mice compared with matched nontransgenic littermates. Collectively, our results reveal a PKD1-class IIa HDAC axis in intestinal epithelial cells leading to mitogenic signaling.


2012 ◽  
Vol 142 (5) ◽  
pp. S-648
Author(s):  
James Sinnett-Smith ◽  
Steven H. Young ◽  
Nora Rozengurt ◽  
Robert K. Kui ◽  
Osvaldo Rey ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document