mitogenic signaling
Recently Published Documents


TOTAL DOCUMENTS

237
(FIVE YEARS 7)

H-INDEX

49
(FIVE YEARS 1)

2021 ◽  
Author(s):  
Navneet Singh ◽  
Lindsey Romick-Rosendale ◽  
Miki Watanabe-Chailland ◽  
Lisa M. Privette Vinnedge ◽  
Kakajan Komurov

AbstractOncogenic kinase inhibitors show short-lived responses in the clinic due to high rate of acquired resistance. We previously showed that pharmacologically exploiting oncogene-induced proteotoxic stress can be a viable alternative to oncogene-targeted therapy. Here, we performed extensive analyses of the transcriptomic, metabolomic and proteostatic perturbations during the course of treatment of Her2+ breast cancer cells with a Her2 inhibitor covering the drug response, resistance, relapse and drug withdrawal phases. We found that acute Her2 inhibition, in addition to blocking mitogenic signaling, leads to significant decline in the glucose uptake, and shutdown of glycolysis and of global protein synthesis. During prolonged therapy, compensatory overexpression of Her3 allows for the reactivation of mitogenic signaling pathways, but fails to re-engage the glucose uptake and glycolysis, resulting in proteotoxic ER stress, which maintains the protein synthesis block and growth inhibition. Her3-mediated cell proliferation under ER stress during prolonged Her2 inhibition is enabled due to the overexpression of the eIF2 phosphatase GADD34, which uncouples protein synthesis block from the ER stress response to allow for active cell growth. We show that this imbalance in the mitogenic and proteostatic signaling created during the acquired resistance to anti-Her2 therapy imposes a specific vulnerability to the inhibition of the endoplasmic reticulum quality control machinery. The latter is more pronounced in the drug withdrawal phase, where the de-inhibition of Her2 creates an acute surge in the downstream signaling pathways and exacerbates the proteostatic imbalance. Therefore, the acquired resistance mechanisms to oncogenic kinase inhibitors may create secondary vulnerabilities that could be exploited in the clinic.


Cancers ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 3807
Author(s):  
Desmond R. Harrell Stewart ◽  
M. Lee Schmidt ◽  
Howard Donninger ◽  
Geoffrey J. Clark

Lung cancer is the leading cause of cancer-related death worldwide. Lung cancer is commonly driven by mutations in the RAS oncogenes, the most frequently activated oncogene family in human disease. RAS-induced tumorigenesis is inhibited by the tumor suppressor RASSF1A, which induces apoptosis in response to hyperactivation of RAS. RASSF1A expression is suppressed in cancer at high rates, primarily owing to promoter hypermethylation. Recent reports have shown that loss of RASSF1A expression uncouples RAS from apoptotic signaling in vivo, thereby enhancing tumor aggressiveness. Moreover, a concomitant upregulation of RAS mitogenic signaling upon RASSF1A loss has been observed, suggesting RASSF1A may directly regulate RAS activation. Here, we present the first mechanistic evidence for control of RAS activation by RASSF1A. We present a novel interaction between RASSF1A and the Ras GTPase Activating Protein (RasGAP) DAB2IP, an important negative regulator of RAS. Using shRNA-mediated knockdown and stable overexpression approaches, we demonstrate that RASSF1A upregulates DAB2IP protein levels in NSCLC cells. Suppression of RASSF1A and subsequent downregulation of DAB2IP enhances GTP loading onto RAS, thus increasing RAS mitogenic signaling in both mutant- and wildtype-RAS cells. Moreover, co-suppression of RASSF1A and DAB2IP significantly enhances in vitro and in vivo growth of wildtype-RAS cells. Tumors expressing wildtype RAS, therefore, may still suffer from hyperactive RAS signaling when RASSF1A is downregulated. This may render them susceptible to the targeted RAS inhibitors currently in development.


2020 ◽  
Author(s):  
Yi-Chun Chen ◽  
Andrew J. Lutkewitte ◽  
Halesha D. Basavarajappa ◽  
Patrick T. Fueger

ABSTRACTA loss of functional beta cell mass is a final etiological event in the development of frank type 2 diabetes (T2D). To preserve or expand beta cells and therefore treat/prevent T2D, growth factors have been considered therapeutically but have largely failed to achieve robust clinical success. The molecular mechanisms preventing the activation of mitogenic signaling pathways from maintaining functional beta cell mass during the development of T2D remain unknown. We speculated that endogenous negative effectors of mitogenic signaling cascades impede beta cell survival/expansion. Thus, we tested the hypothesis that a stress-inducible epidermal growth factor receptor (EGFR) inhibitor, Mitogen-inducible gene 6 (Mig6), regulates beta cell fate in a T2D milieu. To this end, we determined that: 1) glucolipotoxicity (GLT) induces Mig6, thereby blunting EGFR signaling cascades, and 2) Mig6 mediates molecular events regulating beta cell survival/death. We discovered that GLT impairs EGFR activation, and Mig6 is elevated in human islets from T2D donors as well as GLT-treated rodent islets and 832/13 INS-1 beta cells. Mig6 is essential for GLT-induced EGFR desensitization, as Mig6 suppression rescued the GLT-impaired EGFR and ERK1/2 activation. Further, Mig6 mediated EGFR but not insulin-like growth factor-1 receptor nor hepatocyte growth factor receptor activity in beta cells. Finally, we identified that elevated Mig6 augmented beta cell apoptosis, as Mig6 suppression reduced apoptosis during GLT. In conclusion, we established that T2D and GLT induce Mig6 in pancreatic beta cells. The elevated Mig6 desensitizes EGFR signaling and induces beta cell death. Our findings suggest that Mig6 could be a novel therapeutic target for T2D, as blocking Mig6 could possibly enhance mitogenic signaling cascades in a diabetic milieu to promote beta cell survival and prevent beta cell death.


Cell Reports ◽  
2020 ◽  
Vol 32 (11) ◽  
pp. 108151
Author(s):  
Ke Chen ◽  
Xuanmao Jiao ◽  
Agnese Di Rocco ◽  
Duanwen Shen ◽  
Shaohua Xu ◽  
...  

2019 ◽  
Vol 10 ◽  
Author(s):  
Xiaoli Sheng ◽  
Kannan Yao ◽  
Anwen Shao ◽  
Sheng Tu ◽  
Xinxia Zhang ◽  
...  

2019 ◽  
Vol 2 (4) ◽  
pp. e201900343 ◽  
Author(s):  
Hong Liang ◽  
Huanwen Mu ◽  
Frantz Jean-Francois ◽  
Bindu Lakshman ◽  
Suparna Sarkar-Banerjee ◽  
...  

Plasma membrane (PM) curvature defines cell shape and intracellular organelle morphologies and is a fundamental cell property. Growth/proliferation is more stimulated in flatter cells than the same cells in elongated shapes. PM-anchored K-Ras small GTPase regulates cell growth/proliferation and plays key roles in cancer. The lipid-anchored K-Ras form nanoclusters selectively enriched with specific phospholipids, such as phosphatidylserine (PS), for efficient effector recruitment and activation. K-Ras function may, thus, be sensitive to changing lipid distribution at membranes with different curvatures. Here, we used complementary methods to manipulate membrane curvature of intact/live cells, native PM blebs, and synthetic liposomes. We show that the spatiotemporal organization and signaling of an oncogenic mutant K-RasG12V favor flatter membranes with low curvature. Our findings are consistent with the more stimulated growth/proliferation in flatter cells. Depletion of endogenous PS abolishes K-RasG12V PM curvature sensing. In cells and synthetic bilayers, only mixed-chain PS species, but not other PS species tested, mediate K-RasG12V membrane curvature sensing. Thus, K-Ras nanoclusters act as relay stations to convert mechanical perturbations to mitogenic signaling.


2019 ◽  
Vol 285 ◽  
pp. 178
Author(s):  
Paula M. Brito ◽  
Raphaël Devillard ◽  
Anne Nègre-Salvayre ◽  
Leonor M. Almeida ◽  
Teresa C.P. Dinis ◽  
...  

Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 2847-2847
Author(s):  
Alanna Maguire ◽  
Talal Hilal ◽  
Xianfeng Chen ◽  
Allison C. Rosenthal ◽  
Lisa M. Rimsza

Abstract Introduction: Primary central nervous system lymphoma (PCNSL) is a rare intracranial lymphoma that accounts for less than 1% of all non-Hodgkins lymphomas and 3% of all brain tumors. Histopathologically, approximately 90% of PCNSL cases are categorized as a diffuse large B-Cell lymphoma (DLBCL). DLBCL malignancies are subdivided by Cell of Origin (COO), with the vast majority of PCNSL categorized as non-germinal center B cell (non-GCB) by immunohistochemistry. Gene expression profiling (GEP), however, has shown that immunohistochemically defined non-GCB resolves into two distinct subtypes, namely activated B-cell (ABC) and unclassified (UNC) subtypes. Using the Lymph2Cx molecular COO subtyping assay, we have found that 91% of PCNSL are ABC (unpublished data). Unlike systemic-DLBCL, PCNSL is largely confined to and rarely metastasizes outside of the immune privileged central nervous system. Despite this, PCNSL is one of the most aggressive forms of DLBCL. Given the immune privileged milieu in which PCNSL arises, we hypothesized that this milieu elicits a transcriptional profile that contributes to the enhanced aggressive nature of PCNSL compared to systemic-DLBCL. To investigate this hypothesis, this study assessed the gene expression differences between ABC-PCNSL and ABC-systemic-DLBCL, in order to identify novel players in the pathogenesis of ABC-PCNSL. Methods: A total of 35 HIV negative samples, with proven ABC-subtype COO as per the GEP Lymph2Cx assay, were employed; including 10 ABC systemic-DLBCL and 25 primary ABC PCNSL cases with no concurrent or prior history of systemic DLBCL. Samples were reviewed by a hematopathologist to confirm diagnoses and determine tumor content. Samples with <60% tumor content were macro-dissected before nucleic acid extraction, which was performed using the Qiagen AllPrep DNA/RNA FFPE Kit. Extracted DNA and RNA were quantified using the Qubit HS-kit and NanoDrop respectively. Digital gene expression technology was used to perform the PanCancer Pathways panel (NanoString, Seattle, WA). Differential gene expression analysis was performed using the NanoString specific statistical method NanoStringDiff. Identified gene sets were analyzed using the online Gene Set Enrichment Analysis (GSEA) Molecular Signatures Database (MSigDB). Results: Of the 739 cancer related genes targeted by the PanCancer panel, 256 were found to be significantly differentially expressed in the ABC-PCNSL cohort compared to the ABC-DLBCL cohort (p<0.05). Fifty six genes were upregulated and 200 were downregulated. With a 4.9 fold change, the most significantly overexpressed gene was FGF1 (p=4.7E-11). FGF1 encodes a primary ligand for the fibroblast growth factor receptors (FGFR) -1, -2, -3 and -4; of which, FGFR2 (p=1.0E-7) and FGFR3 (p=0.003) were also significantly overexpressed. Moreover, MSigDB identified the FGF signaling pathway as enriched in the upregulated gene set (5 genes, p=7.4E-9, FDR=6.6E-7). FGFRs are a family of receptors that activate known mitogenic signaling pathways including MAPK signaling, which MSigDB identified as the most enriched pathway in the upregulated gene set (14 genes, p=1.65E-19, FDR=2.2E-16). MSigDB analysis of the 200 down regulated genes revealed that 5 of the top 20 enriched signaling pathways were immune related and included Signaling by interleukins (26 genes, p=2.9E-38, FDR=3.2E-36), Immune cytokine signaling (31 genes, p=1.1 E-34, FDR=1.1E-32), chemokine signaling (28 genes, p=1.5E-34, FDR=1.4E-32), T-cell receptor signaling (24 genes, p=2.4E-34, FDR=1.9E-32) and Toll-like receptor signaling (23 genes, p=4.1E-33, FDR=3.0E-31). Conclusions: We show, for the first time, that ABC-PCNSL and ABC-systemic-DLBCL possess significantly different transcriptional profiles despite identical, molecularly determined, COO status. A principle difference between these DLBCL malignancies is their anatomical location related immune privilege status which is reflected as reduced immune related signaling in the CNS-DLBCL cohort and may have important mitogenic signaling implications. Indeed, the results suggest that the enhanced aggressive nature of PCNSL compared to systemic-DLBCL is mediated, at least in part, by enhanced FGF signaling; a pathway with known roles in cell survival and proliferation. Disclosures Rimsza: NanoString: Other: Inventor on the patent for the Lymph2Cx assay.


Author(s):  
Yessenia Ballou ◽  
Alexandria Rivas ◽  
Andres Belmont ◽  
Luv Patel ◽  
Clarissa Amaya ◽  
...  

2018 ◽  
Vol 138 (5) ◽  
pp. S35
Author(s):  
G. Tanghe ◽  
C. Urwyler-Rösselet ◽  
P. De Groote ◽  
M. Devos ◽  
B. Gilbert ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document