Su1492 - Glial Cell Line Derived Neurotrophic Factor Prevents High Fat Diet-Induced Hepatic Fibrosis

2018 ◽  
Vol 154 (6) ◽  
pp. S-1157
Author(s):  
Simon M. Mwangi ◽  
Ali Ahmad ◽  
Ge Li ◽  
Shanthi Srinivasan
2011 ◽  
Vol 140 (5) ◽  
pp. S-44
Author(s):  
Simon M. Mwangi ◽  
Smitha Marri ◽  
Behtash G. Nezami ◽  
Ping P. Fu ◽  
Javelin C. Cheng ◽  
...  

2016 ◽  
Vol 310 (2) ◽  
pp. G103-G116 ◽  
Author(s):  
Simon Musyoka Mwangi ◽  
Sophia Peng ◽  
Behtash Ghazi Nezami ◽  
Natalie Thorn ◽  
Alton B. Farris ◽  
...  

Glial cell line-derived neurotrophic factor (GDNF) protects against high-fat diet (HFD)-induced hepatic steatosis in mice, however, the mechanisms involved are not known. In this study we investigated the effects of GDNF overexpression and nanoparticle delivery of GDNF in mice on hepatic steatosis and fibrosis and the expression of genes involved in the regulation of hepatic lipid uptake and de novo lipogenesis. Transgenic overexpression of GDNF in liver and other metabolically active tissues was protective against HFD-induced hepatic steatosis. Mice overexpressing GDNF had significantly reduced P62/sequestosome 1 protein levels suggestive of accelerated autophagic clearance. They also had significantly reduced peroxisome proliferator-activated receptor-γ (PPAR-γ) and CD36 gene expression and protein levels, and lower expression of mRNA coding for enzymes involved in de novo lipogenesis. GDNF-loaded nanoparticles were protective against short-term HFD-induced hepatic steatosis and attenuated liver fibrosis in mice with long-standing HFD-induced hepatic steatosis. They also suppressed the liver expression of steatosis-associated genes. In vitro, GDNF suppressed triglyceride accumulation in Hep G2 cells through enhanced p38 mitogen-activated protein kinase-dependent signaling and inhibition of PPAR-γ gene promoter activity. These results show that GDNF acts directly in the liver to protect against HFD-induced cellular stress and that GDNF may have a role in the treatment of nonalcoholic fatty liver disease.


2014 ◽  
Vol 306 (6) ◽  
pp. G515-G525 ◽  
Author(s):  
Simon Musyoka Mwangi ◽  
Behtash Ghazi Nezami ◽  
Blessing Obukwelu ◽  
Mallappa Anitha ◽  
Smitha Marri ◽  
...  

Obesity is a growing epidemic with limited effective treatments. The neurotrophic factor glial cell line-derived neurotrophic factor (GDNF) was recently shown to enhance β-cell mass and improve glucose control in rodents. Its role in obesity is, however, not well characterized. In this study, we investigated the ability of GDNF to protect against high-fat diet (HFD)-induced obesity. GDNF transgenic (Tg) mice that overexpress GDNF under the control of the glial fibrillary acidic protein promoter and wild-type (WT) littermates were maintained on a HFD or regular rodent diet for 11 wk, and weight gain, energy expenditure, and insulin sensitivity were monitored. Differentiated mouse brown adipocytes and 3T3-L1 white adipocytes were used to study the effects of GDNF in vitro. Tg mice resisted the HFD-induced weight gain, insulin resistance, dyslipidemia, hyperleptinemia, and hepatic steatosis seen in WT mice despite similar food intake and activity levels. They exhibited significantly ( P < 0.001) higher energy expenditure than WT mice and increased expression in skeletal muscle and brown adipose tissue of peroxisome proliferator activated receptor-α and β1- and β3-adrenergic receptor genes, which are associated with increased lipolysis and enhanced lipid β-oxidation. In vitro, GDNF enhanced β-adrenergic-mediated cAMP release in brown adipocytes and suppressed lipid accumulation in differentiated 3T3L-1 cells through a p38MAPK signaling pathway. Our studies demonstrate a novel role for GDNF in the regulation of high-fat diet-induced obesity through increased energy expenditure. They show that GDNF and its receptor agonists may be potential targets for the treatment or prevention of obesity.


Sign in / Sign up

Export Citation Format

Share Document