promoter methylation
Recently Published Documents





2024 ◽  
Vol 84 ◽  
M. Ahmad ◽  
Y. Hameed ◽  
M. Khan ◽  
M Usman ◽  
A. Rehman ◽  

Abstract Cancer is a fatal malignancy and its increasing worldwide prevalence demands the discovery of more sensitive and reliable molecular biomarkers. To investigate the GINS1 expression level and its prognostic value in distinct human cancers using a series of multi-layered in silico approach may help to establish it as a potential shared diagnostic and prognostic biomarker of different cancer subtypes. The GINS1 mRNA, protein expression, and promoter methylation were analyzed using UALCAN and Human Protein Atlas (HPA), while mRNA expression was further validated via GENT2. The potential prognostic values of GINS1 were evaluated through KM plotter. Then, cBioPortal was utilized to examine the GINS1-related genetic mutations and copy number variations (CNVs), while pathway enrichment analysis was performed using DAVID. Moreover, a correlational analysis between GINS1 expression and CD8+ T immune cells and a the construction of gene-drug interaction network was performed using TIMER, CDT, and Cytoscape. The GINS1 was found down-regulated in a single subtypes of human cancer while commonly up-regulated in 23 different other subtypes. The up-regulation of GINS1 was significantly correlated with the poor overall survival (OS) of Liver Hepatocellular Carcinoma (LIHC), Lung Adenocarcinoma (LUAD), and Kidney renal clear cell carcinoma (KIRC). The GINS1 was also found up-regulated in LIHC, LUAD, and KIRC patients of different clinicopathological features. Pathways enrichment analysis revealed the involvement of GINS1 in two diverse pathways, while few interesting correlations were also documented between GINS1 expression and its promoter methylation level, CD8+ T immune cells level, and CNVs. Moreover, we also predicted few drugs that could be used in the treatment of LIHC, LUAD, and KIRC by regulating the GINS1 expression. The expression profiling of GINS1 in the current study has suggested it a novel shared diagnostic and prognostic biomarker of LIHC, LUAD, and KIRC.

2022 ◽  
Vol 22 ◽  
Muhammad Usman ◽  
Yasir Hameed ◽  
Mukhtiar Ahmad ◽  
Muhammad Junaid Iqbal ◽  
Aghna Maryam ◽  

Aims: This study was launched to identify the SHMT2 associated Human Cancer subtypes. Background: Cancer is the 2nd leading cause of death worldwide. Previous reports revealed the limited involvement of SHMT2 in human cancer. In the current study, we comprehensively analyzed the role of SHMT2 in 24 major subtypes of human cancers using in silico approach and identified a few subtypes that are mainly associated with SHMT2. Objective:: We aim to comprehensively analyze the role of SHMT2 in 24 major subtypes of human cancers using in silico approach and identified a few subtypes that are mainly associated with SHMT2. Earlier, limited knowledge exists in the medical literature regarding the involvement of Serine Hydroxymethyltransferase 2 (SHMT2) in human cancer. Methods: In the current study, we comprehensively analyzed the role of SHMT2 in 24 major subtypes of human cancers using in silico approach and identified a few subtypes that are mainly associated with SHMT2. Pan-cancer transcriptional expression profiling of SHMT2 was done using UALCAN while further validation was performed using GENT2. For translational profiling of SHMT2, we utilized Human Protein Atlas (HPA) platform. Promoter methylation, genetic alteration, and copy number variations (CNVs) profiles were analyzed through MEXPRESS and cBioPortal. Survival analysis was carried out through Kaplan–Meier (KM) plotter platform. Pathway enrichment analysis of SHMT2 was performed using DAVID, while the gene-drug network was drawn through CTD and Cytoscape. Furthermore, in the tumor microenvironment, a correlation between tumor purity, CD8+ T immune cells infiltration, and SHMT2 expression was accessed using TIMER. Results: SHMT2 was found overexpressed in 24 different subtypes of human cancers and its overexpression was significantly associated with the reduced Overall survival (OS) and Relapse-free survival durations of Breast cancer (BRCA), Kidney renal papillary cell carcinoma (KIRP), Liver hepatocellular carcinoma (LIHC), and Lung adenocarcinoma (LUAD) patients. This implies that SHMT2 plays a significant role in the development and progression of these cancers. We further noticed that SHMT2 was also up-regulated in BRCA, KIRP, LIHC, and LUAD patients of different clinicopathological features. Pathways enrichment analysis revealed the involvement of SHMT2 enriched genes in five diverse pathways. Furthermore, we also explored some interesting correlations between SHMT2 expression and promoter methylation, genetic alterations, CNVs, tumor purity, and CD8+ T immune cell infiltrates. Conclusion: Our results suggested that overexpressed SHMT2 is correlated with the reduced OS and RFS of the BRCA, KIRP, LIHC, and LUAD patients and can be a potential diagnostic and prognostic biomarker for these cancers.

2022 ◽  
Abigail Goodman ◽  
José E. Velázquez Vega ◽  
Chad Glenn ◽  
Jeffrey J. Olson

Abstract Target population These recommendations apply to adult patients with progressive or recurrent glioblastoma (GBM).QuestionFor adult patients with progressive glioblastoma does testing for Isocitrate Dehydrogenase (IDH) 1 or 2 mutations provide new additional management or prognostic information beyond that derived from the tumor at initial presentation?RecommendationLevel III: Repeat IDH mutation testing is not necessary if the tumor is histologically similar to the primary tumor and the patient’s clinical course is as expected. Question For adult patients with progressive glioblastoma does repeat testing for MGMT promoter methylation provide new or additional management or prognostic information beyond that derived from the tumor at initial presentation and what methods of detection are optimal?Recommendation Level III: Repeat MGMT promoter methylation is not recommended. Question For adult patients with progressive glioblastoma does EGFR amplification or mutation testing provide management or prognostic information beyond that provided by histologic analysis and if performed on previous tissue samples, does it need to be repeated?RecommendationLevel III: In cases that are difficult to classify as glioblastoma on histologic features EGFR amplification testing may help in classification. If a previous EGFR amplification was detected, repeat testing is not necessary. Repeat EGFR amplification or mutational testing may be recommended in patients in which target therapy is being considered.Question For adult patients with progressive glioblastoma does whole genome or large panel sequencing provide management or prognostic information beyond that derived from histologic analysis?RecommendationLevel III: Primary or repeat whole genome or large panel sequencing may be considered in patients who are eligible or interested in molecularly guided therapy or clinical trials.QuestionFor adult patients with progressive glioblastoma should immune checkpoint biomarker testing be performed to provide management and prognostic information beyond that obtained from histologic analysis?RecommendationLevel III: The current evidence does not support making PD-L1 or mismatch repair (MMR) enzyme activity a component of standard testing.QuestionFor adult patients with progressive glioblastoma are there meaningful biomarkers for bevacizumab responsiveness and does their assessment provide additional information for tumor management and prognosis beyond that learned by standard histologic analysis?RecommendationLevel III: No established Bevacizumab biomarkers are currently available based upon the inclusion criteria of this guideline.

2022 ◽  
Vol 8 ◽  
Pan Hao ◽  
Kai-yue Song ◽  
Si-qi Wang ◽  
Xiao-jun Huang ◽  
Da-wei Yao ◽  

Tumorigenesis is associated with metabolic abnormalities and genomic instability. Microsatellite mutations, including microsatellite instability (MSI) and loss of heterozygosity (LOH), are associated with the functional impairment of some tumor-related genes. To investigate the role of MSI and LOH in sporadic breast tumors in canines, 22 tumors DNA samples and their adjacent normal tissues were evaluated using polyacrylamide gel electrophoresis and silver staining for 58 microsatellites. Quantitative real-time polymerase chain reaction, promoter methylation analysis and immunohistochemical staining were used to quantify gene expression. The results revealed that a total of 14 tumors (6 benign tumors and 8 breast cancers) exhibited instability as MSI-Low tumors. Most of the microsatellite loci possessed a single occurrence of mutations. The maximum number of MSI mutations on loci was observed in tumors with a lower degree of differentiation. Among the unstable markers, FH2060 (4/22), ABCC9tetra (4/22) and SCN11A (6/22) were high-frequency mutation sites, whereas FH2060 was a high-frequency LOH site (4/22). The ABCC9tetra locus was mutated only in cancerous tissue, although it was excluded by transcription. The corresponding genes and proteins were significantly downregulated in malignant tissues, particularly in tumors with MSI. Furthermore, the promoter methylation results of the adenosine triphosphate binding cassette subfamily C member 9 (ABCC9) showed that there was a high level of methylation in breast tissues, but only one case showed a significant elevation compared with the control. In conclusion, MSI-Low or MSI-Stable is characteristic of most sporadic mammary tumors. Genes associated with tumorigenesis are more likely to develop MSI. ABCC9 protein and transcription abnormalities may be associated with ABCC9tetra instability.

Yu Fan ◽  
Guiqin Xie ◽  
Zhu Wang ◽  
Yu Wang ◽  
Yanping Wang ◽  

Abstract Purpose There remain a lack of biomarkers for endocrine therapy resistance in patients with breast cancer (BC), which is proving to be a great challenge. In vitro experiments have shown that downregulation of PTEN expression leads to resistance to tamoxifen (TAM) in BC cells. We aimed to investigate the predictive role of tumor PTEN promoter methylation and PTEN expression in long-term survival after TAM adjuvant therapy in patients with early-stage BC. Methods From 2001 to 2013, 105 patients with stage I–III BC who were treated with standardized adjuvant TAM for 5 years or until relapse in West China Hospital (WCH) were enrolled in this study. PTEN expression and DNA methylation of three specified sequences from the PTEN promoter in primary tumors were measured using immunohistochemistry and pyrosequencing. A cohort of 159 hormone receptor-positive patients receiving TAM treatment from The Cancer Genome Atlas (TCGA) database was used for verification. Results Median follow-up time for the WCH cohort was 141.7 months. The low, moderate, and high PTEN expression groups had differing 10-year disease-free survival (DFS) (42.3%, 55%, 81%, respectively, P = 0.027) and overall survival (OS) rates (65%, 84.2%, 90.5%, respectively, P = 0.027). Higher methylation levels of the second sequence (− 819 to − 787 bp), rather than the first (− 1143 to − 1107 bp) or third sequence (− 663 to − 593 bp), independently increased the risk of disease recurrence (hazard ratio = 2.60) and death (hazard ratio = 3.79) in the WCH cohort, according to multivariate Cox regression analysis. Importantly, out of the five CpG islands located within this sequence, only high methylation of the − 796 CpG island predicted shorter DFS and OS. In TCGA validation cohort, there was also a trend of higher methylation of the − 796 CpG island correlating with shorter disease-free intervals, with borderline significance (P = 0.057). Conclusion Low PTEN expression and high methylation of its promoter (sequence − 819 to − 787 bp) in tissue predict poor DFS and OS in hormone receptor-positive early BC patients who received adjuvant TAM.

2022 ◽  
Vol 13 (2) ◽  
pp. 706-714
Yixi Su ◽  
Qiang Huang ◽  
Li Lu ◽  
Hu Qu ◽  
Dejuan Wang ◽  

2022 ◽  
Vol 164 (1) ◽  
pp. 4
Isabel Rodriguez ◽  
Christina Smith ◽  
Christopher Pennil ◽  
Marc Radke ◽  
Sarah Bernards ◽  

Sign in / Sign up

Export Citation Format

Share Document