Implications of non-equilibrium sorption on the interception–sorption trench remediation strategy

Geoderma ◽  
1998 ◽  
Vol 84 (1-3) ◽  
pp. 109-120 ◽  
Author(s):  
P.W Hitchcock ◽  
D.W Smith
Energies ◽  
2019 ◽  
Vol 12 (13) ◽  
pp. 2562 ◽  
Author(s):  
Guofeng Han ◽  
Yang Chen ◽  
Xiaoli Liu

The pulse decay test is the main method employed to determine permeability for tight rocks, and is widely used. The testing gas can be strongly adsorbed on the pore surface of unconventional reservoir cores, such as shale and coal rock. However, gas adsorption has not been well considered in analysis pulse decay tests. In this study, the conventional flow model of adsorbed gas in porous media was modified by considering the volume of the adsorbed phase. Then, pulse decay tests of equilibrium sorption, unsteady state and pseudo-steady-state non-equilibrium sorption models, were analyzed by simulations. For equilibrium sorption, it is found that the Cui-correction method is excessive when the adsorbed phase volume is considered. This method is good at very low pressure, and is worse than the non-correction method at high pressure. When the testing pressure and Langmuir volume are large and the vessel volumes are small, a non-negligible error exists when using the Cui-correction method. If the vessel volumes are very large, gas adsorption can be ignored. For non-equilibrium sorption, the pulse decay characteristics of unsteady state and pseudo-steady-state non-equilibrium sorption models are similar to those of unsteady state and pseudo-steady-state dual-porosity models, respectively. When the upstream and downstream pressures become equal, they continue to decay until all of the pressures reach equilibrium. The Langmuir volume and pressure, the testing pressure and the porosity, affect the pseudo-storativity ratio and the pseudo-interporosity flow coefficient. Their impacts on non-equilibrium sorption models are similar to those of the storativity ratio and the interporosity flow coefficient in dual-porosity models. Like dual-porosity models, the pseudo-pressure derivative can be used to identify equilibrium and non-equilibrium sorption models at the early stage, and also the unsteady state and pseudo-steady-state non-equilibrium sorption models at the late stage. To identify models using the pseudo-pressure derivative at the early stage, the suitable vessel volumes should be chosen according to the core adsorption property, porosity and the testing pressure. Finally, experimental data are analyzed using the method proposed in this study, and the results are sufficient.


2016 ◽  
Vol 99 (12) ◽  
pp. 1803-1810
Author(s):  
I. A. Kaliev ◽  
S. T. Mukhambetzhanov ◽  
G. S. Sabitova

2016 ◽  
Vol 8 (2) ◽  
pp. 39-43 ◽  
Author(s):  
Ibragim Adietovich Kaliev ◽  
Saltanbek Talapedenovich Mukhambetzhanov ◽  
Gul'nara Sagyndykovna Sabitova

Sign in / Sign up

Export Citation Format

Share Document