Effect of surface roughness on pool boiling heat transfer

2000 ◽  
Vol 43 (22) ◽  
pp. 4073-4085 ◽  
Author(s):  
Myeong-Gie Kang
1998 ◽  
Vol 120 (2) ◽  
pp. 468-476 ◽  
Author(s):  
Moon-Hyun Chun ◽  
Myeong-Gie Kang

In an effort to determine the combined effects of major parameters of heat exchanger tubes on the nucleate pool boiling heat transfer in the scaled in-containment refueling water storage tank (IRWST) of advanced light water reactors (ALWRs), a total of 1966 data points for q″ versus ΔT have been obtained using various combinations of tube diameters, surface roughness, and tube orientations. The experimental results show that: (1) increased surface roughness increases the heat transfer coefficient for both horizontal and vertical tubes, and the effect of surface roughness is more pronounced for the vertical tubes compared to the horizontal tubes, (2) the two heat transfer mechanisms, i.e., increased heat transfer due to liquid agitation by bubbles generated and reduced heat transfer by the formation of large vapor slugs and bubble coalescence, are different in two regions of low heat flux (q″ ≤ 50 kW/m2) and high heat flux (q″ > 50 kW/m2) depending on the orientation of tubes and the degree of surface roughness, and (3) the heat transfer rate decreases as the tube diameter is increased for both horizontal and vertical tubes, but the effect of tube diameter on the nucleate pool boiling heat transfer for vertical tubes is greater than that for horizontal tubes. Two empirical heat transfer correlations for q″, one for horizontal tubes and the other for vertical tubes, are obtained in terms of surface roughness (ε) and tube diameter (D). In addition, a simple empirical correlation for nucleate pool boiling heat transfer coefficient (hb) is obtained as a function of heat flux (q″) only.


2021 ◽  
Vol 39 (2) ◽  
pp. 329-336
Author(s):  
Farhan M. Haidary ◽  
Md. Rabbi Hasan ◽  
Mohammad Adib ◽  
Sadman H. Labib ◽  
Md. Jubayer Hossain ◽  
...  

This study investigates the pool boiling heat transfer of water over cylindrical heating tubes for different orientations and surface roughness of the tubes. First, two orientations of a smooth heating tube, horizontal and vertical, were used in the boiling chamber. For a given heat flux, the heat transfer coefficient achieved with the horizontal tube was always higher than that for the vertical tube. To investigate the influence of surface roughness, a rough heating tube with a fully rough outer surface was developed through a metal etching process. Under the same range of wall superheat, the rough tube enhanced the heat transfer rate significantly compared to the smooth tube. Finally, a modified heating tube (MHT) was developed by axially roughening half of the surface of an originally smooth tube. The orientation angle of the rough surface of this MHT was varied from 0° (horizontal-upward) to 180° (horizontal-downward) in the chamber. The heat flux increased significantly with the increase of orientation angles from 0° to 90° (the maximum of 80 kW/m2 at 90°), whereas the same decreased as the orientation angle is further increased from 90° to 180°. Results revealed that the bubble dynamics over the heating tubes play a vital role in pool boiling performance.


Sign in / Sign up

Export Citation Format

Share Document