aluminum plate
Recently Published Documents


TOTAL DOCUMENTS

418
(FIVE YEARS 85)

H-INDEX

22
(FIVE YEARS 5)

Sensors ◽  
2021 ◽  
Vol 21 (22) ◽  
pp. 7573
Author(s):  
Juan M. Romero-Arguello ◽  
Anh-Vu Pham ◽  
Christopher S. Gardner ◽  
Brad T. Funsten

This paper presents the design and development of miniature coils for wireless power and data transfer through metal. Our coil has a total size of 15 mm × 13 mm × 6 mm. Experimental results demonstrate that we can harvest 440 mW through a 1 mm-thick aluminum plate. Aluminum and stainless-steel barriers of different thicknesses were used to characterize coil performance. Using a pair of the designed coils, we have developed a through-metal communication system to successfully transfer data through a 1 mm-thick aluminum plate. A maximum data rate of 100 bps was achieved using only harvested power. To the best of our knowledge, this is the first report that demonstrates power and data transfer through aluminum using miniature coils.


Energies ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 7140
Author(s):  
Shwe Sin Han ◽  
Usman Ghafoor ◽  
Tareq Saeed ◽  
Hassan Elahi ◽  
Usman Masud ◽  
...  

The availability of fresh drinkable water and water security is becoming a global challenge for sustainable development. In this regard, solar stills, due to their ease in operation, installation, and utilization of direct sunlight (as thermal energy), promise a better and sustainable future technology for water security in urban and remote areas. The major issue is its low distillate productivity, which limits its widespread commercialization. In this study, the effect of silicon (Si) particles is examined to improve the absorber surface temperature of the solar still absorber plate, which is the major component for increased distillate yield. Various weight percentages of Si particles were introduced in paint and coated on the aluminum absorber surface. Extensive indoor (using a self-made halogen light-based solar simulator) and outdoor testing were conducted to optimize the concentration. The coatings with 15 wt % Si in the paint exhibited the highest increase in temperature, namely, 98.5 °C under indoor controlled conditions at 1000 W/m2 irradiation, which is 65.81% higher than a bare aluminum plate and 37.09% higher compared to a black paint-coated aluminum plate. On the other hand, coatings with 10 wt % Si reached up to 73.2 °C under uncontrolled outdoor conditions compared to 68.8 °C for the black paint-coated aluminum plate. A further increase in concentration did not improve the surface temperature, which was due to an excessive increase in thermal conductivity and high convective heat losses.


Inventions ◽  
2021 ◽  
Vol 6 (4) ◽  
pp. 77
Author(s):  
Naseer T. Alwan ◽  
Milia H. Majeed ◽  
Sergey E. Shcheklein ◽  
Obed M. Ali ◽  
Seepana PraveenKumar

The low freshwater productivity of a conventional solar still is considered a challenge for researchers due to the high temperature of the glass cover or basin water depth. In current work, a newly designed solar still was suggested according to the climatic conditions of Yekaterinburg/Russia, which included an enhanced condensation and evaporation process by spraying a thin water film on a hot absorber plate and then passing the generated water vapor by free convection over the aluminum plate (low temperature). The distillation system under study was tested during July 2020 and 29 July was chosen as a typical day from 08:00 a.m. to 8:00 p.m. The results showed that the largest amount of water vapor condenses on the aluminum plate (about 46%), and the rest condenses on the glass cover. This means that the aluminum plate effectively improved productivity due to the flow of humid air naturally (free convection) on the aluminum plate (its surface temperature was lower than that of the glass cover). The cost analytical calculations showed that the cost of producing one liter of distilled water from the suggested solar still was 0.063$.


2021 ◽  
Vol 2066 (1) ◽  
pp. 012109
Author(s):  
Hongming Liu

Abstract In order to study the application of nonlinear ultrasonic in the quantitative identification of defective aluminum plate, different depth cracks are machined on the aluminum alloy plate with a thickness of 10 mm by wire cutting to simulate the defects in the plate. The normal and defective aluminum plates are selected to establish the experimental model, and the continuous wavelet transform (CWT) is used to extract the characteristic parameters of the aluminum plate nonlinear ultrasonic signal. The dimensions of the data are reduced by principal component analysis (PCA), and the principal component with the top three contribution rate are selected as the characteristic value. Finally, the support vector machine (SVM) algorithm is used to analyze the aluminum alloy plate state and classify the defect signal. The experimental results show that the feasibility of nonlinear ultrasonic signal recognition of aluminum plate defects is verified by combining principal component analysis and support vector machine model.


2021 ◽  
Vol 21 (18) ◽  
pp. 14235-14250
Author(s):  
Karlie N. Rees ◽  
Dhiraj K. Singh ◽  
Eric R. Pardyjak ◽  
Timothy J. Garrett

Abstract. A new precipitation sensor, the Differential Emissivity Imaging Disdrometer (DEID), is used to provide the first continuous measurements of the mass, diameter, and density of individual hydrometeors. The DEID consists of an infrared camera pointed at a heated aluminum plate. It exploits the contrasting thermal emissivity of water and metal to determine individual particle mass by assuming that energy is conserved during the transfer of heat from the plate to the particle during evaporation. Particle density is determined from a combination of particle mass and morphology. A Multi-Angle Snowflake Camera (MASC) was deployed alongside the DEID to provide refined imagery of particle size and shape. Broad consistency is found between derived mass–diameter and density–diameter relationships and those obtained in prior studies. However, DEID measurements show a generally weaker dependence with size for hydrometeor density and a stronger dependence for aggregate snowflake mass.


2021 ◽  
Author(s):  
Julianne E. Jonsson ◽  
Michael R. Hill ◽  
Christopher R. Chighizola ◽  
Christopher R. D’Elia ◽  
Barbara S. Linke ◽  
...  

Abstract Undesired distortion can arise during machining of metals from two main mechanisms: 1) release of bulk residual stress in the pre-form, and 2) deformation induced by the cutting tool. The interaction between these two mechanisms is explored herein using aluminum plate-shaped samples that have a large surface with variations of bulk residual stress (BRS), where that surface is subsequently milled and we observe milling-induced residual stress (MIRS) and distortion. Plate samples are cut from two kinds of large blocks, one kind stress-relieved by stretching and a second kind that had been solution heat treated, quenched, and aged. MIRS is measured following milling using hole-drilling with fine depth increments. Distortions of thin wafers cut at the milled surfaces are used to show how the interactions between BRS and MIRS change milling-induced distortion. Data from the study show that the directions of MIRS and distortion relative to the milling direction are changed when milling in samples with high BRS magnitude (roughly ±100 MPa), with the direction of maximum curvature rotating toward or away from the milling direction depending on the sign and direction of BRS. High magnitude BRS increased distortion, nearly doubling the amount found compared to milling in samples free of BRS.


2021 ◽  
Author(s):  
Hrishikesh Danawe ◽  
Serife Tol

Abstract In this paper, we present a thickness-contrast based flat lens for subwavelenth imaging in an aluminum plate. The lens is made of phononic crystal (PC) with a triangular lattice arrangement of through holes drilled over an aluminum plate. Subwave-length imaging is achieved by exploiting the concept of negative refraction of A0 plate mode for the optical dispersion branch of the PC. The wavenumbers are matched at a design frequency by creating a step change in the thickness of the PC-lens and host plate. The thickness-contrast results in refractive index of minus one at the interface of the lens and host plate. Negative refraction-based lens overcomes the diffraction limit and enables focusing of flexural waves in an area less than a square wavelength. We validate the flat lens design at a single design frequency through numerical simulations and experiments. Further, we numerically demonstrate the tunability of the lens design over a broadband frequency range by modifying the thickness-contrast between the lens and host plate. The proposed frequency tunable design is promising for many applications such as ultrasonic inspection, tetherless energy transfer, and energy harvesting, where the localization of wave energy in a small spot is desirable.


Sign in / Sign up

Export Citation Format

Share Document