Prediction of turbine blade heat transfer and aerodynamics using a new unsteady boundary layer transition model

2002 ◽  
Vol 45 (4) ◽  
pp. 815-829 ◽  
Author(s):  
M.T. Schobeiri ◽  
P. Chakka
Author(s):  
M. T. Schobeiri ◽  
P. Chakka ◽  
K. Pappu

Effect of unsteady wakes on aerodynamic and heat transfer characteristics of a turbine blade in a cascade were analyzed both experimentally and theoretically. Comprehensive aerodynamic data were collected for different wake passing frequencies that are typical of turbomachinery. Hot-wire probes were used for collection of boundary layer data on suction and pressure surfaces of the turbine blade. Heat transfer measurements were made using steady liquid crystal techniques. Boundary layer data were analyzed through intermittency function to get insight into the transition process under unsteady wake flow conditions. The experimental and theoretical results presented in this paper confirm the general validity of the unsteady boundary layer transition model developed by Chakka and Schobeiri (1997). This model is based on a relative intermittency function, which accounts for the effects of periodic unsteady wake flow on the boundary layer transition. Three distinct quantities are identified as primarily responsible for the transition of an unsteady boundary layer. These quantities, which exhibit the basis of the transition analysis presented in this paper, are: (1) relative intermittency, (2) maximum intermittency, and (3) minimum intermittency. To validate the developed transition model, it is implemented in an existing boundary layer code, and the resulting heat transfer coefficients are compared with the experimental data.


1999 ◽  
Vol 121 (1) ◽  
pp. 88-97 ◽  
Author(s):  
P. Chakka ◽  
M. T. Schobeiri

A boundary layer transition model is developed that accounts for the effects of periodic unsteady wake flow on the boundary layer transition. To establish the model, comprehensive unsteady boundary layer and heat transfer experimental investigations are conducted. The experiments are performed on a curved plate at zero-streamwise pressure gradient under periodic unsteady wake flow, where the frequency of the periodic unsteady flow is varied. The analysis of the time-dependent velocities, turbulence intensities, and turbulence intermittencies has identified three distinct quantities as primarily responsible for the transition of an unsteady boundary layer. These quantities, which exhibit the basis of the transition model presented in this paper, are: (1) relative intermittency, (2) maximum intermittency, and (3) minimum intermittency. To validate the developed transition model, it is implemented in an existing boundary layer code, and the resulting velocity profiles and the heat transfer coefficients are compared with the experimental data.


Author(s):  
P. Chakka ◽  
M. T. Schobeiri

A boundary layer transition model is developed that accounts for the effects of periodic unsteady wake flow on the boundary layer transition. To establish the model, comprehensive unsteady boundary layer and heat transfer experimental investigations are conducted. The experiments are performed on a curved plate at zero-streamwise pressure gradient under periodic unsteady wake flow, where the frequency of the periodic unsteady flow is varied. The analysis of the time dependent velocities, turbulence intensities, and turbulence intermittencies has identified three distinct quantities as primarily responsible for the transition of an unsteady boundary layer. These quantities, which exhibit the basis of the transition model presented in this paper, are: (1) relative intermittency, (2) maximum intermittency, and (3) minimum intermittency. To validate the developed transition model, it is implemented in an existing boundary layer code, and the resulting velocity profiles and the heat transfer coefficients are compared with the experimental data.


Author(s):  
G. Roberts ◽  
A. Brown

This paper describes the results of an experimental investigation into extended boundary-layer transition regions on suction surfaces of four sets of turbine blades in a cascade rig. A transition model is proposed which is tested with some success in a modified version of STAN5, a boundary-layer computer programme.


Author(s):  
M. T. Schobeiri

This paper presents recent advances in boundary layer research that deal with an intermittency based unsteady boundary layer transition model and its implementation into the Reynolds averaged Navier-Stokes equations (RANS). RANS equations are conditioned to include the ensemble averaged unsteady intermittency function. The unsteady boundary layer transition model is based on a universal unsteady intermittency function developed earlier. It accounts for the effects of periodic unsteady wake flow on the boundary layer transition. The transition model is the result of an inductive approach analyzing the unsteady data obtained by experiments on a curved plate at zero-streamwise pressure gradient under periodic unsteady wake flow. To validate this model, systematic experimental investigations were conducted on the suction and pressure surfaces of turbine blades that were integrated into a turbine cascade test facility, which was designed for unsteady boundary layer investigations. This model is implemented into the above mentioned conditioned RANS-equations and calculation results are presented.


2017 ◽  
Vol 48 (10) ◽  
pp. 877-891
Author(s):  
Athmane Harizi ◽  
A. Gahmousse ◽  
E.-A. Mahfoudi ◽  
A. Mameri

2003 ◽  
Vol 9 (1) ◽  
pp. 1-9
Author(s):  
M. T. Schobeiri ◽  
L. Wright

This two-part article presents recent advances in boundary layer research that deal with the unsteady boundary layer transition modeling and its validation. A new unsteady boundary layer transition model was developed based on a universal unsteady intermittency function. It accounts for the effects of periodic unsteady wake flow on the boundary layer transition. To establish the transition model, an inductive approach was implemented; the approach was based on the results of comprehensive experimental and theoretical studies of unsteady wake flow and unsteady boundary layer flow. The experiments were performed on a curved plate at a zero streamwise pressure gradient under a periodic unsteady wake flow, where the frequency of the periodic unsteady flow was varied. To validate the model, systematic experimental investigations were performed on the suction and pressure surfaces of turbine blades integrated into a high-subsonic cascade test facility, which was designed for unsteady boundary layer investigations. The analysis of the experiment's results and comparison with the model's prediction confirm the validity of the model and its ability to predict accurately the unsteady boundary layer transition.


Author(s):  
Florian Herbst ◽  
Andreas Fiala ◽  
Joerg R. Seume

The current design of low-pressure turbines (LPTs) with steady-blowing vortex generating jets (VGJ) uses steady computational fluid dynamics (CFD). The present work aims to support this design approach by proposing a new semi-empirical transition model for injection-induced laminar-turbulent boundary layer transition. It is based on the detection of cross-flow vortices in the boundary layer which cause inflectional cross-flow velocity profiles. The model is implemented in the CFD code TRACE within the framework of the γ-Reθ transition model and is a reformulated, re-calibrated, and extended version of a previously presented model. It is extensively validated by means of VGJ as well as non-VGJ test cases capturing the local transition process in a physically reasonable way. Quantitative aerodynamic design parameters of several VGJ configurations including steady and periodic-unsteady inflow conditions are predicted in good accordance with experimental values. Furthermore, the quantitative prediction of end-wall flows of LPTs is improved by detecting typical secondary flow structures. For the first time, the newly derived model allows the quantitative design and optimization of LPTs with VGJs.


Author(s):  
Chenglong Wang ◽  
Lei Wang ◽  
Bengt Sundén ◽  
Valery Chernoray ◽  
Hans Abrahamsson

In the present study, the heat transfer characteristics on the suction and pressure sides of an outlet guide vane (OGV) are investigated by using liquid crystal thermography (LCT) method in a linear cascade. Because the OGV has a complex curved surface, it is necessary to calibrate the LCT by taking into account the effect of viewing angles of the camera. Based on the calibration results, heat transfer measurements of the OGV were conducted. Both on- and off-design conditions were tested, where the incidence angles of the OGV were 25 degrees and −25 degrees, respectively. The Reynolds numbers, based on the axial flow velocity and the chord length, were 300,000 and 450,000. In addition, heat transfer on suction side of the OGV with +40 degrees incidence angle was measured. The results indicate that the Reynolds number and incidence angle have considerable influences upon the heat transfer on both pressure and suction surfaces. For on-design conditions, laminar-turbulent boundary layer transitions are on both sides, but no flow separation occurs; on the contrary, for off-design conditions, the position of laminar-turbulent boundary layer transition is significantly displaced downstream on the suction surface, and a separation occurs from the leading edge on the pressure surface. As expected, larger Reynolds number gives higher heat transfer coefficients on both sides of the OGV.


Sign in / Sign up

Export Citation Format

Share Document