Free and forced convection in the entry region of a heated vertical channel

1983 ◽  
Vol 26 (1) ◽  
pp. 65-72 ◽  
Author(s):  
L.S. Yao
1960 ◽  
Vol 82 (3) ◽  
pp. 233-238 ◽  
Author(s):  
L. N. Tao

The heat-transfer problems of combined free and forced convection by a fully developed laminar flow in a vertical channel of constant axial wall temperature gradient with or without heat generations are approached by a new method. By introducing a complex function which is directly related to the velocity and temperature fields, the coupled momentum and energy equations are readily combinable to a Helmholtz wave equation in the complex domain. This greatly reduces the complexities of the problems. For illustrations, the cases of flows between parallel plates and in a rectangular channel are treated. It shows that this method is more direct and powerful than those of previous investigations.


PAMM ◽  
2018 ◽  
Vol 18 (1) ◽  
Author(s):  
Janine Glänzel ◽  
Martin Stoll ◽  
Roman Unger

1984 ◽  
Vol 106 (2) ◽  
pp. 297-303 ◽  
Author(s):  
L. C. Chow ◽  
S. R. Husain ◽  
A. Campo

A numerical investigation was conducted to study the simultaneous effects of free convection and axial conduction on forced-convection heat transfer inside a vertical channel at low Peclet numbers. Insulated entry and exit lengths were provided in order to assess the effect of upstream and downstream energy penetration due to axial conduction. The fluid enters the channel with a parabolic velocity and uniform temperature profiles. A constant-property (except for the buoyancy term), steady-state case was assumed for the analysis. Results were categorized into two main groups, the first being the case where the channel walls were hotter than the entering fluid (heating), and the second being the reverse of the first (cooling). For each group, heat transfer between the fluid and the walls were given as functions of the Grashof, Peclet, and Reynolds numbers.


Author(s):  
D. R. V. Prasada Rao ◽  
D. V. Krishna ◽  
Lokenath Debnath

This paper gives a steady linear theory of the combined effect of the free and forced convection in rotating hydromagnetic viscous fluid flows in a porous channel under the action of a uniform magnetic field. The flow is governed by the Grashof numberG, the Hartmann numberH, the Ekman numberE, and the suction Reynolds numberS. The solutions for the velocity field, temperature distribution, magnetic field, mass rate of flow and the shear stresses on the channel boundaries are obtained using a perturbation method with the small parameterS. The nature of the associated boundary layers is investigated for various values of the governing flow parameters. The velocity, the temperature, and the shear stresses are discussed numerically by drawing profiles with reference to the variations in the flow parameters.


Sign in / Sign up

Export Citation Format

Share Document