A dry-spot model of critical heat flux applicable to both pool boiling and subcooled forced convection boiling

2000 ◽  
Vol 43 (2) ◽  
pp. 241-250 ◽  
Author(s):  
Sang Jun Ha ◽  
Hee Cheon No
2010 ◽  
Vol 132 (6) ◽  
Author(s):  
Hyungdae Kim ◽  
Ho Seon Ahn ◽  
Moo Hwan Kim

The pool boiling characteristics of water-based nanofluids with alumina and titania nanoparticles of 0.01 vol % were investigated on a thermally heated disk heater at saturated temperature and atmospheric pressure. The results confirmed the findings of previous studies that nanofluids can significantly enhance the critical heat flux (CHF), resulting in a large increase in the wall superheat. It was found that some nanoparticles deposit on the heater surface during nucleate boiling, and the surface modification due to the deposition results in the same magnitude of CHF enhancement in pure water as for nanofluids. Subsequent to the boiling experiments, the interfacial properties of the heater surfaces were examined using dynamic wetting of an evaporating water droplet. As the surface temperature increased, the evaporating meniscus on the clean surface suddenly receded toward the liquid due to the evaporation recoil force on the liquid-vapor interface, but the nanoparticle-fouled surface exhibited stable wetting of the liquid meniscus even at a remarkably higher wall superheat. The heat flux gain attainable due to the improved wetting of the evaporating meniscus on the fouled surface showed good agreement with the CHF enhancement during nanofluid boiling. It is supposed that the nanoparticle layer increases the stability of the evaporating microlayer underneath a bubble growing on a heated surface and thus the irreversible growth of a hot/dry spot is inhibited even at a high wall superheat, resulting in the CHF enhancement observed when boiling nanofluids.


1971 ◽  
Author(s):  
R. E. Balzhiser ◽  
R. E. Barry ◽  
B. F. Caswell ◽  
R. L. Gahman ◽  
K. Y. Kim ◽  
...  

Author(s):  
Youngsup Song ◽  
Yangying Zhu ◽  
Daniel J. Preston ◽  
H. Jeremy Cho ◽  
Zhengmao Lu ◽  
...  

1974 ◽  
Author(s):  
P. B. Whalley ◽  
P. Hutchinson ◽  
Geoffrey F. Hewitt

2019 ◽  
Author(s):  
Samson Semenovich Kutateladze ◽  
G.I. Bobrovich ◽  
I. I. Gogonin ◽  
N.N. Mamontova ◽  
V.N. Moskvicheva

2004 ◽  
Vol 11 (2) ◽  
pp. 133-150 ◽  
Author(s):  
M. B. Dizon ◽  
J. Yang ◽  
F. B. Cheung ◽  
J. L. Rempe ◽  
K. Y. Suh ◽  
...  

1996 ◽  
Vol 118 (1) ◽  
pp. 103-109 ◽  
Author(s):  
W. R. McGillis ◽  
V. P. Carey

The Marangoni effect on the critical heat flux (CHF) condition in pool boiling of binary mixtures has been identified and its effect has been quantitatively estimated with a modified model derived from hydrodynamics. The physical process of CHF in binary mixtures, and models used to describe it, are examined in the light of recent experimental evidence, accurate mixture properties, and phase equilibrium revealing a correlation to surface tension gradients and volatility. A correlation is developed from a heuristic model including the additional liquid restoring force caused by surface tension gradients. The CHF condition was determined experimentally for saturated methanol/water, 2-propanol/water, and ethylene glycol/water mixtures, over the full range of concentrations, and compared to the model. The evidence in this study demonstrates that in a mixture with large differences in surface tension, there is an additional hydrodynamic restoring force affecting the CHF condition.


2021 ◽  
Vol 190 ◽  
pp. 116849
Author(s):  
Seyed Moein Rassoulinejad-Mousavi ◽  
Firas Al-Hindawi ◽  
Tejaswi Soori ◽  
Arif Rokoni ◽  
Hyunsoo Yoon ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document