Lower bounds for monotone real circuit depth and formula size and tree-like Cutting Planes

1998 ◽  
Vol 67 (1) ◽  
pp. 37-41 ◽  
Author(s):  
Jan Johannsen
2021 ◽  
Vol 20 (2) ◽  
Author(s):  
Rebekah Herrman ◽  
James Ostrowski ◽  
Travis S. Humble ◽  
George Siopsis

2018 ◽  
Vol 18 (02) ◽  
pp. 1850012 ◽  
Author(s):  
Jan Krajíček

The feasible interpolation theorem for semantic derivations from [J. Krajíček, Interpolation theorems, lower bounds for proof systems, and independence results for bounded arithmetic, J. Symbolic Logic 62(2) (1997) 457–486] allows to derive from some short semantic derivations (e.g. in resolution) of the disjointness of two [Formula: see text] sets [Formula: see text] and [Formula: see text] a small communication protocol (a general dag-like protocol in the sense of Krajíček (1997) computing the Karchmer–Wigderson multi-function [Formula: see text] associated with the sets, and such a protocol further yields a small circuit separating [Formula: see text] from [Formula: see text]. When [Formula: see text] is closed upwards, the protocol computes the monotone Karchmer–Wigderson multi-function [Formula: see text] and the resulting circuit is monotone. Krajíček [Interpolation by a game, Math. Logic Quart. 44(4) (1998) 450–458] extended the feasible interpolation theorem to a larger class of semantic derivations using the notion of a real communication complexity (e.g. to the cutting planes proof system CP). In this paper, we generalize the method to a still larger class of semantic derivations by allowing randomized protocols. We also introduce an extension of the monotone circuit model, monotone circuits with a local oracle (CLOs), that does correspond to communication protocols for [Formula: see text] making errors. The new randomized feasible interpolation thus shows that a short semantic derivation (from a certain class of derivations larger than in the original method) of the disjointness of [Formula: see text], [Formula: see text] closed upwards, yields a small randomized protocol for [Formula: see text] and hence a small monotone CLO separating the two sets. This research is motivated by the open problem to establish a lower bound for proof system [Formula: see text] operating with clauses formed by linear Boolean functions over [Formula: see text]. The new randomized feasible interpolation applies to this proof system and also to (the semantic versions of) cutting planes CP, to small width resolution over CP of Krajíček [Discretely ordered modules as a first-order extension of the cutting planes proof system, J. Symbolic Logic 63(4) (1998) 1582–1596] (system R(CP)) and to random resolution RR of Buss, Kolodziejczyk and Thapen [Fragments of approximate counting, J. Symbolic Logic 79(2) (2014) 496–525]. The method does not yield yet lengths-of-proofs lower bounds; for this it is necessary to establish lower bounds for randomized protocols or for monotone CLOs.


1997 ◽  
Vol 62 (3) ◽  
pp. 708-728 ◽  
Author(s):  
Maria Bonet ◽  
Toniann Pitassi ◽  
Ran Raz

AbstractWe consider small-weight Cutting Planes (CP*) proofs; that is, Cutting Planes (CP) proofs with coefficients up to Poly(n). We use the well known lower bounds for monotone complexity to prove an exponential lower bound for the length of CP* proofs, for a family of tautologies based on the clique function. Because Resolution is a special case of small-weight CP, our method also gives a new and simpler exponential lower bound for Resolution.We also prove the following two theorems: (1) Tree-like CP* proofs cannot polynomially simulate non-tree-like CP* proofs. (2) Tree-like CP* proofs and Bounded-depth-Frege proofs cannot polynomially simulate each other.Our proofs also work for some generalizations of the CP* proof system. In particular, they work for CP* with a deduction rule, and also for any proof system that allows any formula with small communication complexity, and any set of sound rules of inference.


1997 ◽  
Vol 62 (2) ◽  
pp. 457-486 ◽  
Author(s):  
Jan Krajíček

AbstractA proof of the (propositional) Craig interpolation theorem for cut-free sequent calculus yields that a sequent with a cut-free proof (or with a proof with cut-formulas of restricted form; in particular, with only analytic cuts) with k inferences has an interpolant whose circuit-size is at most k. We give a new proof of the interpolation theorem based on a communication complexity approach which allows a similar estimate for a larger class of proofs. We derive from it several corollaries: (1)Feasible interpolation theorems for the following proof systems:(a)resolution(b)a subsystem of LK corresponding to the bounded arithmetic theory (α)(c)linear equational calculus(d)cutting planes.(2)New proofs of the exponential lower bounds (for new formulas)(a)for resolution ([15])(b)for the cutting planes proof system with coefficients written in unary ([4]).(3)An alternative proof of the independence result of [43] concerning the provability of circuit-size lower bounds in the bounded arithmetic theory (α).In the other direction we show that a depth 2 subsystem of LK does not admit feasible monotone interpolation theorem (the so called Lyndon theorem), and that a feasible monotone interpolation theorem for the depth 1 subsystem of LK would yield new exponential lower bounds for resolution proofs of the weak pigeonhole principle.


2001 ◽  
Vol 10 (3) ◽  
pp. 210-246 ◽  
Author(s):  
J. Edmonds ◽  
R. Impagliazzo ◽  
S. Rudich ◽  
J. Sgall

Sign in / Sign up

Export Citation Format

Share Document