circuit depth
Recently Published Documents


TOTAL DOCUMENTS

47
(FIVE YEARS 22)

H-INDEX

6
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Taylor Patti ◽  
Jean Kossaifi ◽  
Anima Anandkumar ◽  
Susanne Yelin

Abstract Despite extensive research efforts, few quantum algorithms for classical optimization demonstrate realizable quantum advantage. The utility of many quantum algorithms is limited by high requisite circuit depth and nonconvex optimization landscapes. We tackle these challenges by introducing a new variational quantum algorithm that utilizes multi-basis graph encodings and nonlinear activation functions. Our technique results in increased optimization performance, a factor of two increase in effective quantum resources, and a quadratic reduction in measurement complexity. While the classical simulation of many qubits with traditional quantum formalism is impossible due to its exponential scaling, we mitigate this limitation with exact circuit representations using factorized tensor rings. In particular, the shallow circuits permitted by our technique, combined with efficient factorized tensor-based simulation, enable us to successfully optimize the MaxCut of the nonlocal 512-vertex DIMACS library graphs on a single GPU. By improving the performance of quantum optimization algorithms while requiring fewer quantum resources and utilizing shallower, more error-resistant circuits, we offer tangible progress for variational quantum optimization.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Amir H. Karamlou ◽  
William A. Simon ◽  
Amara Katabarwa ◽  
Travis L. Scholten ◽  
Borja Peropadre ◽  
...  

AbstractIn the near-term, hybrid quantum-classical algorithms hold great potential for outperforming classical approaches. Understanding how these two computing paradigms work in tandem is critical for identifying areas where such hybrid algorithms could provide a quantum advantage. In this work, we study a QAOA-based quantum optimization approach by implementing the Variational Quantum Factoring (VQF) algorithm. We execute experimental demonstrations using a superconducting quantum processor, and investigate the trade off between quantum resources (number of qubits and circuit depth) and the probability that a given biprime is successfully factored. In our experiments, the integers 1099551473989, 3127, and 6557 are factored with 3, 4, and 5 qubits, respectively, using a QAOA ansatz with up to 8 layers and we are able to identify the optimal number of circuit layers for a given instance to maximize success probability. Furthermore, we demonstrate the impact of different noise sources on the performance of QAOA, and reveal the coherent error caused by the residual ZZ-coupling between qubits as a dominant source of error in a near-term superconducting quantum processor.


2021 ◽  
Author(s):  
Sun Woo Park ◽  
Hyunju Lee ◽  
Byung Chun Kim ◽  
Youngho Woo ◽  
Kyungtaek Jun

Algorithms ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 294
Author(s):  
Rebekah Herrman ◽  
Lorna Treffert ◽  
James Ostrowski ◽  
Phillip C. Lotshaw ◽  
Travis S. Humble ◽  
...  

We develop a global variable substitution method that reduces n-variable monomials in combinatorial optimization problems to equivalent instances with monomials in fewer variables. We apply this technique to 3-SAT and analyze the optimal quantum unitary circuit depth needed to solve the reduced problem using the quantum approximate optimization algorithm. For benchmark 3-SAT problems, we find that the upper bound of the unitary circuit depth is smaller when the problem is formulated as a product and uses the substitution method to decompose gates than when the problem is written in the linear formulation, which requires no decomposition.


Quantum ◽  
2021 ◽  
Vol 5 ◽  
pp. 535
Author(s):  
Justin Yirka ◽  
Yiğit Subaşı

One strategy to fit larger problems on NISQ devices is to exploit a tradeoff between circuit width and circuit depth. Unfortunately, this tradeoff still limits the size of tractable problems since the increased depth is often not realizable before noise dominates. Here, we develop qubit-efficient quantum algorithms for entanglement spectroscopy which avoid this tradeoff. In particular, we develop algorithms for computing the trace of the n-th power of the density operator of a quantum system, Tr(ρn), (related to the Rényi entropy of order n) that use fewer qubits than any previous efficient algorithm while achieving similar performance in the presence of noise, thus enabling spectroscopy of larger quantum systems on NISQ devices. Our algorithms, which require a number of qubits independent of n, are variants of previous algorithms with width proportional to n, an asymptotic difference. The crucial ingredient in these new algorithms is the ability to measure and reinitialize subsets of qubits in the course of the computation, allowing us to reuse qubits and increase the circuit depth without suffering the usual noisy consequences. We also introduce the notion of effective circuit depth as a generalization of standard circuit depth suitable for circuits with qubit resets. This tool helps explain the noise-resilience of our qubit-efficient algorithms and should aid in designing future algorithms. We perform numerical simulations to compare our algorithms to the original variants and show they perform similarly when subjected to noise. Additionally, we experimentally implement one of our qubit-efficient algorithms on the Honeywell System Model H0, estimating Tr(ρn) for larger n than possible with previous algorithms.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Laura Clinton ◽  
Johannes Bausch ◽  
Toby Cubitt

AbstractThe quantum circuit model is the de-facto way of designing quantum algorithms. Yet any level of abstraction away from the underlying hardware incurs overhead. In this work, we develop quantum algorithms for Hamiltonian simulation "one level below” the circuit model, exploiting the underlying control over qubit interactions available in most quantum hardware and deriving analytic circuit identities for synthesising multi-qubit evolutions from two-qubit interactions. We then analyse the impact of these techniques under the standard error model where errors occur per gate, and an error model with a constant error rate per unit time. To quantify the benefits of this approach, we apply it to time-dynamics simulation of the 2D spin Fermi-Hubbard model. Combined with new error bounds for Trotter product formulas tailored to the non-asymptotic regime and an analysis of error propagation, we find that e.g. for a 5 × 5 Fermi-Hubbard lattice we reduce the circuit depth from 1, 243, 586 using the best previous fermion encoding and error bounds in the literature, to 3, 209 in the per-gate error model, or the circuit-depth-equivalent to 259 in the per-time error model. This brings Hamiltonian simulation, previously beyond reach of current hardware for non-trivial examples, significantly closer to being feasible in the NISQ era.


Author(s):  
Mitali Sisodia ◽  
Abhishek Shukla ◽  
Alexandre A. A. de Almeida ◽  
Gerhard W. Dueck ◽  
Anirban Pathak

Recently, various quantum computing and communication tasks have been implemented using IBM's superconductivity-based quantum computers. Here, we show that the circuits used in most of those works were not optimized, and obtain the corresponding optimized circuits. Optimized circuits implementable in IBM quantum computers are also obtained for a set of reversible benchmark circuits. With a clear example, it is shown that the reduction in circuit cost enhances the fidelity of the output state (with respect to the theoretically expected state in the absence of noise) as lesser number of gates and circuit depth introduce lesser amount of errors during evolution of the state. Further, considering Mermin inequality as an example, it is shown that the violation of classical limit is enhanced when we use optimized circuits. Thus, the present approach can be used to identify relatively weaker signature of quantumness and to establish quantum supremacy in a stronger manner.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Hirofumi Nishi ◽  
Taichi Kosugi ◽  
Yu-ichiro Matsushita

AbstractThe imaginary-time evolution method is a well-known approach used for obtaining the ground state in quantum many-body problems on a classical computer. A recently proposed quantum imaginary-time evolution method (QITE) faces problems of deep circuit depth and difficulty in the implementation on noisy intermediate-scale quantum (NISQ) devices. In this study, a nonlocal approximation is developed to tackle this difficulty. We found that by removing the locality condition or local approximation (LA), which was imposed when the imaginary-time evolution operator is converted to a unitary operator, the quantum circuit depth is significantly reduced. We propose two-step approximation methods based on a nonlocality condition: extended LA (eLA) and nonlocal approximation (NLA). To confirm the validity of eLA and NLA, we apply them to the max-cut problem of an unweighted 3-regular graph and a weighted fully connected graph; we comparatively evaluate the performances of LA, eLA, and NLA. The eLA and NLA methods require far fewer circuit depths than LA to maintain the same level of computational accuracy. Further, we developed a “compression” method of the quantum circuit for the imaginary-time steps to further reduce the circuit depth in the QITE method. The eLA, NLA, and compression methods introduced in this study allow us to reduce the circuit depth and the accumulation of error caused by the gate operation significantly and pave the way for implementing the QITE method on NISQ devices.


Quantum ◽  
2021 ◽  
Vol 5 ◽  
pp. 422
Author(s):  
Lena Funcke ◽  
Tobias Hartung ◽  
Karl Jansen ◽  
Stefan Kühn ◽  
Paolo Stornati

Parametric quantum circuits play a crucial role in the performance of many variational quantum algorithms. To successfully implement such algorithms, one must design efficient quantum circuits that sufficiently approximate the solution space while maintaining a low parameter count and circuit depth. In this paper, develop a method to analyze the dimensional expressivity of parametric quantum circuits. Our technique allows for identifying superfluous parameters in the circuit layout and for obtaining a maximally expressive ansatz with a minimum number of parameters. Using a hybrid quantum-classical approach, we show how to efficiently implement the expressivity analysis using quantum hardware, and we provide a proof of principle demonstration of this procedure on IBM's quantum hardware. We also discuss the effect of symmetries and demonstrate how to incorporate or remove symmetries from the parametrized ansatz.


Quantum ◽  
2021 ◽  
Vol 5 ◽  
pp. 394
Author(s):  
Timjan Kalajdzievski ◽  
Nicolás Quesada

We gather and examine in detail gate decomposition techniques for continuous-variable quantum computers and also introduce some new techniques which expand on these methods. Both exact and approximate decomposition methods are studied and gate counts are compared for some common operations. While each having distinct advantages, we find that exact decompositions have lower gate counts whereas approximate techniques can cover decompositions for all continuous-variable operations but require significant circuit depth for a modest precision.


Sign in / Sign up

Export Citation Format

Share Document