Interpolation theorems, lower bounds for proof systems, and independence results for bounded arithmetic

1997 ◽  
Vol 62 (2) ◽  
pp. 457-486 ◽  
Author(s):  
Jan Krajíček

AbstractA proof of the (propositional) Craig interpolation theorem for cut-free sequent calculus yields that a sequent with a cut-free proof (or with a proof with cut-formulas of restricted form; in particular, with only analytic cuts) with k inferences has an interpolant whose circuit-size is at most k. We give a new proof of the interpolation theorem based on a communication complexity approach which allows a similar estimate for a larger class of proofs. We derive from it several corollaries: (1)Feasible interpolation theorems for the following proof systems:(a)resolution(b)a subsystem of LK corresponding to the bounded arithmetic theory (α)(c)linear equational calculus(d)cutting planes.(2)New proofs of the exponential lower bounds (for new formulas)(a)for resolution ([15])(b)for the cutting planes proof system with coefficients written in unary ([4]).(3)An alternative proof of the independence result of [43] concerning the provability of circuit-size lower bounds in the bounded arithmetic theory (α).In the other direction we show that a depth 2 subsystem of LK does not admit feasible monotone interpolation theorem (the so called Lyndon theorem), and that a feasible monotone interpolation theorem for the depth 1 subsystem of LK would yield new exponential lower bounds for resolution proofs of the weak pigeonhole principle.


2018 ◽  
Vol 18 (02) ◽  
pp. 1850012 ◽  
Author(s):  
Jan Krajíček

The feasible interpolation theorem for semantic derivations from [J. Krajíček, Interpolation theorems, lower bounds for proof systems, and independence results for bounded arithmetic, J. Symbolic Logic 62(2) (1997) 457–486] allows to derive from some short semantic derivations (e.g. in resolution) of the disjointness of two [Formula: see text] sets [Formula: see text] and [Formula: see text] a small communication protocol (a general dag-like protocol in the sense of Krajíček (1997) computing the Karchmer–Wigderson multi-function [Formula: see text] associated with the sets, and such a protocol further yields a small circuit separating [Formula: see text] from [Formula: see text]. When [Formula: see text] is closed upwards, the protocol computes the monotone Karchmer–Wigderson multi-function [Formula: see text] and the resulting circuit is monotone. Krajíček [Interpolation by a game, Math. Logic Quart. 44(4) (1998) 450–458] extended the feasible interpolation theorem to a larger class of semantic derivations using the notion of a real communication complexity (e.g. to the cutting planes proof system CP). In this paper, we generalize the method to a still larger class of semantic derivations by allowing randomized protocols. We also introduce an extension of the monotone circuit model, monotone circuits with a local oracle (CLOs), that does correspond to communication protocols for [Formula: see text] making errors. The new randomized feasible interpolation thus shows that a short semantic derivation (from a certain class of derivations larger than in the original method) of the disjointness of [Formula: see text], [Formula: see text] closed upwards, yields a small randomized protocol for [Formula: see text] and hence a small monotone CLO separating the two sets. This research is motivated by the open problem to establish a lower bound for proof system [Formula: see text] operating with clauses formed by linear Boolean functions over [Formula: see text]. The new randomized feasible interpolation applies to this proof system and also to (the semantic versions of) cutting planes CP, to small width resolution over CP of Krajíček [Discretely ordered modules as a first-order extension of the cutting planes proof system, J. Symbolic Logic 63(4) (1998) 1582–1596] (system R(CP)) and to random resolution RR of Buss, Kolodziejczyk and Thapen [Fragments of approximate counting, J. Symbolic Logic 79(2) (2014) 496–525]. The method does not yield yet lengths-of-proofs lower bounds; for this it is necessary to establish lower bounds for randomized protocols or for monotone CLOs.



1997 ◽  
Vol 62 (3) ◽  
pp. 708-728 ◽  
Author(s):  
Maria Bonet ◽  
Toniann Pitassi ◽  
Ran Raz

AbstractWe consider small-weight Cutting Planes (CP*) proofs; that is, Cutting Planes (CP) proofs with coefficients up to Poly(n). We use the well known lower bounds for monotone complexity to prove an exponential lower bound for the length of CP* proofs, for a family of tautologies based on the clique function. Because Resolution is a special case of small-weight CP, our method also gives a new and simpler exponential lower bound for Resolution.We also prove the following two theorems: (1) Tree-like CP* proofs cannot polynomially simulate non-tree-like CP* proofs. (2) Tree-like CP* proofs and Bounded-depth-Frege proofs cannot polynomially simulate each other.Our proofs also work for some generalizations of the CP* proof system. In particular, they work for CP* with a deduction rule, and also for any proof system that allows any formula with small communication complexity, and any set of sound rules of inference.



1995 ◽  
Vol 1 (4) ◽  
pp. 425-467 ◽  
Author(s):  
Alasdair Urquhart

§1. Introduction. The classical propositional calculus has an undeserved reputation among logicians as being essentially trivial. I hope to convince the reader that it presents some of the most challenging and intriguing problems in modern logic. Although the problem of the complexity of propositional proofs is very natural, it has been investigated systematically only since the late 1960s. Interest in the problem arose from two fields connected with computers, automated theorem proving and computational complexity theory. The earliest paper in the subject is a ground-breaking article by Tseitin [62], the published version of a talk given in 1966 at a Leningrad seminar. In the three decades since that talk, substantial progress has been made in determining the relative complexity of proof systems, and in proving strong lower bounds for some restricted proof systems. However, major problems remain to challenge researchers. The present paper provides a survey of the field, and of some of the techniques that have proved successful in deriving lower bounds on the complexity of proofs. A major area only touched upon here is the proof theory of bounded arithmetic and its relation to the complexity of propositional proofs. The reader is referred to the book by Buss [10] for background in bounded arithmetic. The forthcoming book by Krajíček [40] also gives a good introduction to bounded arithmetic, as well as covering most of the basic results in complexity of propositional proofs.



2016 ◽  
Vol 4 ◽  
Author(s):  
JAN KRAJÍČEK

We consider sets ${\it\Gamma}(n,s,k)$ of narrow clauses expressing that no definition of a size $s$ circuit with $n$ inputs is refutable in resolution R in $k$ steps. We show that every CNF with a short refutation in extended R, ER, can be easily reduced to an instance of ${\it\Gamma}(0,s,k)$ (with $s,k$ depending on the size of the ER-refutation) and, in particular, that ${\it\Gamma}(0,s,k)$ when interpreted as a relativized NP search problem is complete among all such problems provably total in bounded arithmetic theory $V_{1}^{1}$. We use the ideas of implicit proofs from Krajíček [J. Symbolic Logic, 69 (2) (2004), 387–397; J. Symbolic Logic, 70 (2) (2005), 619–630] to define from ${\it\Gamma}(0,s,k)$ a nonrelativized NP search problem $i{\it\Gamma}$ and we show that it is complete among all such problems provably total in bounded arithmetic theory $V_{2}^{1}$. The reductions are definable in theory $S_{2}^{1}$. We indicate how similar results can be proved for some other propositional proof systems and bounded arithmetic theories and how the construction can be used to define specific random unsatisfiable formulas, and we formulate two open problems about them.



1994 ◽  
Vol 1 (36) ◽  
Author(s):  
Alexander A. Razborov

In this paper we study the pairs (U,V) of disjoint NP-sets representable in a theory T of Bounded Arithmetic in the sense that T proves U intersection V = \emptyset. For a large variety of theories T we exhibit a natural disjoint NP-pair which is complete for the class of disjoint NP-pairs representable in T. This allows us to clarify the approach to showing independence of central open questions in Boolean complexity from theories of Bounded Arithmetic initiated in [1]. Namely, in order to prove the independence result from a theory T, it is sufficient to separate the corresponding complete NP-pair by a (quasi)poly-time computable set. We remark that such a separation is obvious for the theory S(S_2) + S Sigma^b_2 - PIND considered in [1], and this gives an alternative proof of the main result from that paper.<br /> <br />[1] A. Razborov. Unprovability of lower bounds on circuit size in certain fragments of Bounded Arithmetic. To appear in <em>Izvestiya of the RAN</em>, 1994.



1998 ◽  
Vol 63 (4) ◽  
pp. 1582-1596 ◽  
Author(s):  
Jan Krajíček

AbstractWe define a first-order extension LK(CP) of the cutting planes proof system CP as the first-order sequent calculus LK whose atomic formulas are CP-inequalities ∑i ai · xi ≥ b (xi's variables, ai's and b constants). We prove an interpolation theorem for LK(CP) yielding as a corollary a conditional lower bound for LK(CP)-proofs. For a subsystem R(CP) of LK(CP), essentially resolution working with clauses formed by CP-inequalities, we prove a monotone interpolation theorem obtaining thus an unconditional lower bound (depending on the maximum size of coefficients in proofs and on the maximum number of CP-inequalities in clauses). We also give an interpolation theorem for polynomial calculus working with sparse polynomials.The proof relies on a universal interpolation theorem for semantic derivations [16, Theorem 5.1].LK(CP) can be viewed as a two-sorted first-order theory of Z considered itself as a discretely ordered Z-module. One sort of variables are module elements, another sort are scalars. The quantification is allowed only over the former sort. We shall give a construction of a theory LK(M) for any discretely ordered module M (e.g., LK(Z) extends LK(CP)). The interpolation theorem generalizes to these theories obtained from discretely ordered Z-modules. We shall also discuss a connection to quantifier elimination for such theories.We formulate a communication complexity problem whose (suitable) solution would allow to improve the monotone interpolation theorem and the lower bound for R(CP).



2007 ◽  
Author(s):  
T. Lee ◽  
A. Shraibman


2021 ◽  
Vol 13 (1) ◽  
pp. 1-25
Author(s):  
Dmitry Itsykson ◽  
Alexander Okhotin ◽  
Vsevolod Oparin

The partial string avoidability problem is stated as follows: given a finite set of strings with possible “holes” (wildcard symbols), determine whether there exists a two-sided infinite string containing no substrings from this set, assuming that a hole matches every symbol. The problem is known to be NP-hard and in PSPACE, and this article establishes its PSPACE-completeness. Next, string avoidability over the binary alphabet is interpreted as a version of conjunctive normal form satisfiability problem, where each clause has infinitely many shifted variants. Non-satisfiability of these formulas can be proved using variants of classical propositional proof systems, augmented with derivation rules for shifting proof lines (such as clauses, inequalities, polynomials, etc.). First, it is proved that there is a particular formula that has a short refutation in Resolution with a shift rule but requires classical proofs of exponential size. At the same time, it is shown that exponential lower bounds for classical proof systems can be translated for their shifted versions. Finally, it is shown that superpolynomial lower bounds on the size of shifted proofs would separate NP from PSPACE; a connection to lower bounds on circuit complexity is also established.



2021 ◽  
Vol 19 (2) ◽  
pp. 75-83
Author(s):  
Aviad Rubinstein ◽  
Junyao Zhao

We study the communication complexity of incentive compatible auction-protocols between a monopolist seller and a single buyer with a combinatorial valuation function over n items [Rubinstein and Zhao 2021]. Motivated by the fact that revenue-optimal auctions are randomized [Thanassoulis 2004; Manelli and Vincent 2010; Briest et al. 2010; Pavlov 2011; Hart and Reny 2015] (as well as by an open problem of Babaioff, Gonczarowski, and Nisan [Babaioff et al. 2017]), we focus on the randomized communication complexity of this problem (in contrast to most prior work on deterministic communication). We design simple, incentive compatible, and revenue-optimal auction-protocols whose expected communication complexity is much (in fact infinitely) more efficient than their deterministic counterparts. We also give nearly matching lower bounds on the expected communication complexity of approximately-revenue-optimal auctions. These results follow from a simple characterization of incentive compatible auction-protocols that allows us to prove lower bounds against randomized auction-protocols. In particular, our lower bounds give the first approximation-resistant, exponential separation between communication complexity of incentivizing vs implementing a Bayesian incentive compatible social choice rule, settling an open question of Fadel and Segal [Fadel and Segal 2009].



1995 ◽  
Vol 5 (3-4) ◽  
pp. 191-204 ◽  
Author(s):  
Mauricio Karchmer ◽  
Ran Raz ◽  
Avi Wigderson


Sign in / Sign up

Export Citation Format

Share Document