Corrigendum to “A modified Hausdorff distance between fuzzy sets”

2002 ◽  
Vol 148 (1-4) ◽  
pp. 233-234 ◽  
Author(s):  
Kiran R. Bhutani ◽  
B.B. Chaudhuri ◽  
Azriel Rosenfeld
2018 ◽  
Vol 11 (2) ◽  
pp. 285-308 ◽  
Author(s):  
Sujit Kumar De ◽  
Shib Sankar Sana

Purpose The purpose of this paper is to deal with profit maximization problem of two-layer supply chain (SC) under fuzzy stochastic demand having finite mean and unknown variance. Buyback policy is employed from the retailer to supplier. The profit of the supplier solely depends on the order size of the retailers. However, the loss of shortage items is related to loss of profit and goodwill dependent. The authors develop the profit function separately for both the retailer and supplier, first, for a decentralized system and, second, joining them, the authors get a centralized system (CS) of decision making, in which one is giving more profit to both of them. The problem is solved analytically first, then the authors fuzzify the model and solve by fuzzy Hausdorff distance method. Design/methodology/approach The analytical models are formed for both centralized and decentralized systems under non-cooperative and cooperative environment with suitable constraints. A significant assumption on density function, namely Cauchy-type density function, is introduced for demand rate because of its wider range of the retailers’ satisfactions. Fuzzy Hausdorff metric is incorporated within the fuzzy components of the fuzzy sets itself. Using this method, the authors find out closure values of both centralized and decentralized policies, which is an essential part of any cooperative and non-cooperative two-layer SC models. Moreover, the authors take care of the profit values with corresponding ambiguities for both the systems explicitly. Findings It is found that the centralize policy of SC could only be able to maximize the profit of both the retailers and suppliers. All analytical results are illustrated numerically along with sensitivity analysis and side by side comparative studies between Hausdorff and Euclidean distance measure are done exclusively. Research limitations/implications The main focus of attention of the proposed model is given to usefulness of Hausdorff distance. Unlike other distances, Hausdorff distance can take special care on the similarity measures of different fuzzy sets. Researchers have been engaged to use Hausdorff distance on the different fuzzy sets but, in this study, the authors have used it within the components of a same fuzzy set to gain more closure values than other methods. Originality/value The use of this Hausdorff distance approach is totally new as per literature survey suggested yet. However, the Cauchy-type density function has not been introduced anywhere in SC management problems by modern researchers still now. In crisp model, the sensitivity on goodwill measures really provides a special attention also.


Author(s):  
Dustin Bielecki ◽  
Prakhar Jaiswal ◽  
Rahul Rai

This paper covers a method of taking images of physical parts which are then preprocessed and compared against CAD generated templates. A pseudo milling operation was performed on discretized points along CAD generated mill paths to create binary image templates. The computer-generated images were then tested against one another as a preliminarily sorting technique. This was done to reduce the number of sorting approaches used, by selecting the most reliable and discerning ones, and discarding the others. To apply the selected sorting methods for comparing CAD generated images and the images of physical parts, a translational and scaling normalization technique was implemented. Rotational variation occurs while scanning physical parts and it was addressed using two different techniques: first by determination of best rotation based on modified-Hausdorff distance (MHD); and second by comparing against all CAD based images for all template rotations. The proposed approach for automated sorting of physical parts was demonstrated by categorizing multiple geometries.


Author(s):  
Juan-Juan Peng ◽  
Jian-Qiang Wang ◽  
Xiao-Hui Wu

Hesitant fuzzy sets (HFSs), an extension of fuzzy sets, are considered to be useful in solving decision making problems where decision makers are unable to choose between several values when expressing their preferences. The purpose of this paper is to develop two hesitant fuzzy multi-criteria decision making (MCDM) methods based on prospect theory (PT). First, the novel component-wise ordering method for two hesitant fuzzy numbers (HFNs) is defined; however, this method does not consider the length of the two HFNs. Second, by utilizing the directed Hausdorff distance between two imprecise point sets, the generalized hesitant Hausdorff distance is developed, which overcomes the shortcomings of the existing distance measures. Third, based on the proposed comparison method and distance, as well as PT, the extended TODIM and Preference Ranking Organization Method for Enrichment Evaluations (PROMETHEE) approaches are developed in order to solve MCDM problems with hesitant fuzzy information. Finally, a practical example is provided to illustrate the pragmatism and effectiveness of the proposed approaches. Sensitivity and comparison analyses are also conducted using the same example. The findings indicate that the proposed methods do not require complicated computation procedures, yet still yield a reasonable and credible solution.


2020 ◽  
Vol 12 (2) ◽  
pp. 37-45
Author(s):  
João Marcos Garcia Fagundes ◽  
Allan Rodrigues Rebelo ◽  
Luciano Antonio Digiampietri ◽  
Helton Hideraldo Bíscaro

Bee preservation is important because approximately 70% of all pollination of food crops is made by them and this service costs more than $ 65 billion annually. In order to help this preservation, the identification of the bee species is necessary, and since this is a costly and time-consuming process, techniques that automate and facilitate this identification become relevant. Images of bees' wings in conjunction with computer vision and artificial intelligence techniques can be used to automate this process. This paper presents an approach to do segmentation of bees' wing images and feature extraction. Our approach was evaluated using the modified Hausdorff distance and F measure. The results were, at least, 24% more precise than the related approaches and the proposed approach was able to deal with noisy images.


When two sets are differently sized, the Hausdorff distance can be computed between them, even if the cardinality of one set is infinite. Different versions of this distance have been proposed and employed for face verification, among which the modified Hausdorff distance is the most famous. The important point to be noted is that, among the most commonly used similarity measures, the Hausdorff distance is the only one that has been widely applied to 3D data.


Sign in / Sign up

Export Citation Format

Share Document