scholarly journals cDNA cloning of rat kidney organic anion transporter family.

1996 ◽  
Vol 71 ◽  
pp. 291
Author(s):  
Takashi Sekine ◽  
Makoto Hosoyamada ◽  
Yoshikatsu Kanai ◽  
Hitoshi Endou
2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Qing Li ◽  
Dachuan Zhang ◽  
Hui Wang ◽  
Jun Xie ◽  
Lei Peng ◽  
...  

Solute carrier organic anion transporter family member 4A1 (SLCO4A1-AS1), a newly discovered lncRNA, may exert effects in tumors. Since its role in gastric cancer remains obscure, we sought to explore the mechanism of SLCO4A1-AS1 in gastric cancer. The relationship among SLCO4A1-AS1, miR-149-5p, and STAT3 was detected by bioinformatics, dual luciferase analysis, and Pearson’s test, and the expressions of these genes were determined by quantitative real-time PCR and Western blot. Moreover, CCK-8, flow cytometry, wound healing assay, and Transwell analysis were performed to verify the function of SLCO4A1-AS1 in gastric cancer. Rescue experiments were used to detect the role of miR-149-5p. The expressions of SLCO4A1-AS1 and STAT3 were increased, while the expression of miR-149-5p was suppressed in gastric cancer tissues and cell lines. In addition, STAT3 expression was negatively correlated with miR-149-5p expression but was positively correlated with SLCO4A1-AS1 expression. Overexpression of SLCO4A1-AS1 promoted cell viability, migration, invasion, and STAT3 expression but suppressed apoptosis, while knockdown of SLCO4A1-AS1 had the opposite effect. SLCO4A1-AS1 bound to miR-149-5p and targeted STAT3. Moreover, miR-149-5p mimic inhibited the malignant development of gastric cancer cells and obviously reversed the function of SLCO4A1-AS1 overexpression. Our research reveals that abnormally increased SLCO4A1-AS1 expression may be an important molecular mechanism in the development of gastric cancer.


2015 ◽  
Vol 42 (9) ◽  
pp. 908-910 ◽  
Author(s):  
Satoko Minakawa ◽  
Takahide Kaneko ◽  
Hironori Niizeki ◽  
Hiroki Mizukami ◽  
Yoko Saito ◽  
...  

2003 ◽  
Vol 49 (3) ◽  
pp. 233-238 ◽  
Author(s):  
Masanori Katakura ◽  
Naomi Kudo ◽  
Mari Okazaki ◽  
Yasuhide Hibino ◽  
Yoichi Kawashima

2007 ◽  
Vol 292 (1) ◽  
pp. F361-F372 ◽  
Author(s):  
Marija Ljubojević ◽  
Daniela Balen ◽  
Davorka Breljak ◽  
Marija Kušan ◽  
Naohiko Anzai ◽  
...  

The renal reabsorption and/or excretion of various organic anions is mediated by specific organic anion transporters (OATs). OAT2 (Slc22a7) has been identified in rat kidney, where its mRNA expression exhibits gender differences [females (F) > males (M)]. The exact localization of OAT2 protein in the mammalian kidney has not been reported. Here we studied the expression of OAT2 mRNA by RT-PCR and its protein by Western blotting (WB) and immunocytochemistry (IC) in kidneys of adult intact and gonadectomized M and F, sex hormone-treated castrated M, and prepubertal M and F rats, and the protein in adult M and F mice. In adult rats, the expression of OAT2 mRNA was predominant in the outer stripe (OS) tissue, exhibiting 1) gender dependency (F > M), 2) upregulation by castration and downregulation by ovariectomy, and 3) strong downregulation by testosterone and weak upregulation by estradiol and progesterone treatment. A polyclonal antibody against rat OAT2 on WB of isolated renal membranes labeled a ∼66-kDa protein band that was stronger in F. By IC, the antibody exclusively stained brush border (BB) of the proximal tubule S3 segment (S3) in the OS and medullary rays (F > M). In variously treated rats, the pattern of 66-kDa band density in the OS membranes and the staining intensity of BB in S3 matched the mRNA expression. The expression of OAT2 protein in prepubertal rats was low and gender independent. In mice, the expression pattern largely resembled that in rats. Therefore, OAT2 in rat (and mouse) kidney is localized to the BB of S3, exhibiting gender differences (F > M) that appear in puberty and are caused by strong androgen inhibition and weak estrogen and progesterone stimulation.


2001 ◽  
Vol 281 (2) ◽  
pp. F197-F205 ◽  
Author(s):  
Douglas H. Sweet ◽  
Kevin T. Bush ◽  
Sanjay K. Nigam

The organic anion transporter (OAT) family handles a wide variety of clinically important compounds (antibiotics, nonsteriodal anti-inflammatory drugs, etc.) and toxins. However, little is known about their appearance during development despite documented differences in the handling of anionic drugs among neonates, children, and adults. A similar spatiotemporal pattern of mRNA expression of the OATs (OAT1–4) during kidney development suggests that OAT genes may be useful in understanding the mechanisms of proximal tubule maturation. Moreover, OAT expression in unexpected extrarenal sites (e.g., spinal cord, bone, skin) has also been detected during development, possibly indicating a role for these transporters in the formation or preservation of extrarenal tissues. The cloning of these transporters also paves the way for computer-based modeling of drug-transporter interactions at the molecular level, potentially aiding in the design and assessment of new drugs. Additionally, increased understanding of single nucleotide polymorphisms in OATs and other transporters may eventually allow the use of a patient's expression profile and polymorphisms to individualize drug therapy.


Sign in / Sign up

Export Citation Format

Share Document