scholarly journals Identification and characterization of the fusion retinoic acid receptor in human acute promyelocytic leukemia.

1993 ◽  
Vol 61 ◽  
pp. 262
Author(s):  
Akira Kakizuka
2021 ◽  
Vol 12 ◽  
pp. 204062072097698
Author(s):  
Xiaoyan Han ◽  
Chunxiang Jin ◽  
Gaofeng Zheng ◽  
Yi Li ◽  
Yungui Wang ◽  
...  

Some subtypes of acute myeloid leukemia (AML) share morphologic, immunophenotypic, and clinical features of acute promyelocytic leukemia (APL), but lack a PML–RARA (promyelocytic leukemia–retinoic acid receptor alpha) fusion gene. Instead, they have the retinoic acid receptor beta (RARB) or retinoic acid receptor gamma (RARG) rearranged. Almost all of these AML subtypes exhibit resistance to all-trans retinoic acid (ATRA); undoubtedly, the prognosis is poor. Here, we present an AML patient resembling APL with a novel cleavage and polyadenylation specific factor 6 ( CPSF6) –RARG fusion, showing resistance to ATRA and poor response to chemotherapy with homoharringtonine and cytarabine. Simultaneously, the patient also had extramedullary infiltration.


Blood ◽  
1992 ◽  
Vol 79 (12) ◽  
pp. 3331-3336 ◽  
Author(s):  
D Diverio ◽  
F Lo Coco ◽  
F D'Adamo ◽  
A Biondi ◽  
M Fagioli ◽  
...  

Seventy patients with acute promyelocytic leukemia (APL) were characterized at the DNA level using genomic retinoic acid receptor- alpha (RAR-alpha) probes on Southern blot experiments. Sixty-two cases were defined as M3 according to the French-American-British (FAB) criteria, and eight had a diagnosis of microgranular or variant (M3v) APL. The use of two restriction enzymes and three probes exploring the second intron of the RAR-alpha gene allowed us to detect specific abnormal DNA fragments in every case, with clustering of rearrangements within the 20-kb intronic region between RAR-alpha exons II and III. A more detailed mapping of APL breakpoints was performed in 52 cases in which three EcoRI subregions of the RAR-alpha second intron were analyzed with corresponding probes. Comparison of clinical and hematological features in the three subgroups of patients with distinct RAR-alpha breakpoints did not show significant differences regarding age, peripheral blood (PB) counts, presence of coagulopathy, or FAB classification (M3 v M3v). Interestingly, a significant difference was observed in the M/F ratio of the three subgroups, with a higher incidence of rearrangements at the 5′ end of the RAR-alpha second intron in female patients, and more frequent 3′ breakpoints in males. The results of this study indicate that a unique genomic alteration consistently occurs on the 17q- derivative of the APL specific t(15;17) aberration. Moreover, the clinical relevance of RAR-alpha gene analysis both at diagnosis and in follow-up studies is further emphasized.


2001 ◽  
Vol 21 (21) ◽  
pp. 7172-7182 ◽  
Author(s):  
Suk-Hyun Hong ◽  
Zhihong Yang ◽  
Martin L. Privalsky

ABSTRACT The SMRT corepressor complex participates in transcriptional repression by a diverse array of vertebrate transcription factors. The ability to recruit SMRT appears to play a crucial role in leukemogenesis by the PML-retinoic acid receptor α (RARα) oncoprotein, an aberrant nuclear hormone receptor implicated in human acute promyelocytic leukemia (APL). Arsenite induces clinical remission of APL through a incompletely understood mechanism. We report here that arsenite is a potent inhibitor of the interaction of SMRT with its transcription factor partners, including PML-RARα. Arsenite operates, in part, through a mitogen-activated protein (MAP) kinase cascade culminating in phosphorylation of the SMRT protein, dissociation of SMRT from its nuclear receptor partners, and a relocalization of SMRT out of the nucleus into the cytoplasm of the cell. Conversely, inhibition of this MAP kinase cascade attenuates the effects of arsenite on APL cells. Our results implicate SMRT as an important biological target for the actions of arsenite in both normal and neoplastic cells.


Blood ◽  
1996 ◽  
Vol 87 (3) ◽  
pp. 882-886 ◽  
Author(s):  
RL Redner ◽  
EA Rush ◽  
S Faas ◽  
WA Rudert ◽  
SJ Corey

We have studied an acute promyelocytic leukemia (APL) patient with a variant t(5;17)(q32;q12). This translocation fuses the gene for the nucleolar phosphoprotein nucleophosmin (NPM) to the retinoic acid receptor alpha (RARA). Two alternatively spliced transcripts are expressed, which differ in 129 bases immediately upstream of the RARA sequence. The NPM sequences contained in the shorter NPM-RAR cDNA are identical to the NPM sequences contained in the NPM-ALK fusion gene expressed in t(2;5) lymphomas. The RARA sequences are the same as the RARA sequences found in the PML-RAR and PLZF-RAR fusion seen in t(15;17) and t(11;17) APL, respectively. Both NPM-RAR transcripts fuse NPM and RARA sequence in the same reading frame, to generate translation products of 57 kD and 62 kD. Both NPM-RAR proteins are expressed in the patient's leukemic cells, along with wild-type RARA derived from the uninvolved allele. In transcriptional assays using a retinoic acid response element reporter construct, both NPM-RAR fusion proteins act as retinoic acid-dependent transcriptional activators. This case defines a third class of APL rearrangements, all of which generate fusion proteins of RARA.


Blood ◽  
1992 ◽  
Vol 79 (12) ◽  
pp. 3331-3336 ◽  
Author(s):  
D Diverio ◽  
F Lo Coco ◽  
F D'Adamo ◽  
A Biondi ◽  
M Fagioli ◽  
...  

Abstract Seventy patients with acute promyelocytic leukemia (APL) were characterized at the DNA level using genomic retinoic acid receptor- alpha (RAR-alpha) probes on Southern blot experiments. Sixty-two cases were defined as M3 according to the French-American-British (FAB) criteria, and eight had a diagnosis of microgranular or variant (M3v) APL. The use of two restriction enzymes and three probes exploring the second intron of the RAR-alpha gene allowed us to detect specific abnormal DNA fragments in every case, with clustering of rearrangements within the 20-kb intronic region between RAR-alpha exons II and III. A more detailed mapping of APL breakpoints was performed in 52 cases in which three EcoRI subregions of the RAR-alpha second intron were analyzed with corresponding probes. Comparison of clinical and hematological features in the three subgroups of patients with distinct RAR-alpha breakpoints did not show significant differences regarding age, peripheral blood (PB) counts, presence of coagulopathy, or FAB classification (M3 v M3v). Interestingly, a significant difference was observed in the M/F ratio of the three subgroups, with a higher incidence of rearrangements at the 5′ end of the RAR-alpha second intron in female patients, and more frequent 3′ breakpoints in males. The results of this study indicate that a unique genomic alteration consistently occurs on the 17q- derivative of the APL specific t(15;17) aberration. Moreover, the clinical relevance of RAR-alpha gene analysis both at diagnosis and in follow-up studies is further emphasized.


Blood ◽  
1994 ◽  
Vol 83 (10) ◽  
pp. 2946-2951 ◽  
Author(s):  
LR Hiorns ◽  
T Min ◽  
GJ Swansbury ◽  
A Zelent ◽  
MJ Dyer ◽  
...  

Abstract The translocation t(15;17)(q22;q21) is seen exclusively in patients with acute promyelocytic leukemia (APL) and in the promyelocytic blast crisis of chronic myeloid leukemia (CML). This translocation juxta- poses the promyelocytic leukemia (PML) gene on chromosome 15 and the retinoic acid receptor-alpha (RARA) gene on chromosome 17, resulting in the formation of a chimeric mRNA transcript. We describe a patient with the microgranular variant form of APL, with no detectable cytogenetic abnormality of either chromosomes 15 or 17, who nevertheless had juxtaposition of PML and RARA genes and expressed a chimeric transcript. Conventional cytogenetics showed the karyotype 46,XY,d- er(3)t(3;8)(p25;q12). Fluorescent in situ hybridization (FISH) with paints for chromosomes 8, 15, and 17 confirmed the presence of structurally intact chromosomes 15 and 17 and trisomy for chromosome 8q. Nevertheless, FISH using cosmid probes for PML and RARA showed their juxtaposition on one chromosome 15 homolog. Both genes were also present on their normal homologs; in addition, part of the RARA gene was still present on the remaining chromosome 17. DNA analysis by Southern blotting, performed with a variety of probes including PML, RARA and retinoic acid receptor-beta (RARB), showed a rearrangement in PML. Reverse transcriptase polymerase chain reaction (RT-PCR) confirmed the existence of hybrid transcripts of 276, 455 bp and 623 bp, from PML- RARA on the der(15) chromosome, consistent with alternate exon splicing of the long form of the transcript occurring in 50% to 60% of patients with APL. Our results show that APL patients with cytogenetically normal chromosomes 15 and 17 may, nevertheless, have involvement of both PML and RARA genes defining a subgroup of APL, t(15;17)- negative/PML-RARA-positive which is analogous to Philadelphia chromosome-negative/BCR-ABL-positive CML. In this case, the presence of chimeric transcripts suggests that treatment with all-trans RA may be warranted in APL, even in the absence of detectable cytogenetic change, showing the usefulness of RT-PCR or FISH to aid diagnosis.


DNA Sequence ◽  
2005 ◽  
Vol 16 (1) ◽  
pp. 7-15 ◽  
Author(s):  
Nozomi Miyajima ◽  
Manabu Watanabe ◽  
Emi Ohashi ◽  
Keitaro Ohmori ◽  
Manabu Mochizuki ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document