scholarly journals The inhibitory guanine nucleotide-binding regulatory component of adenylate cyclase. Subunit dissociation and the inhibition of adenylate cyclase in S49 lymphoma cyc- and wild type membranes.

1984 ◽  
Vol 259 (6) ◽  
pp. 3586-3595 ◽  
Author(s):  
T Katada ◽  
G M Bokoch ◽  
M D Smigel ◽  
M Ui ◽  
A G Gilman
1991 ◽  
Vol 280 (2) ◽  
pp. 303-307 ◽  
Author(s):  
L A Ransnäs ◽  
D Leiber ◽  
P A Insel

We examined the interaction between the stimulatory guanine-nucleotide-binding protein, Gs, and the inhibitory guanine-nucleotide-binding protein, Gi, in cell membranes of S49 lymphoma cells. In these cells, beta-adrenergic receptors stimulate the activity of adenylate cyclase via Gs, whereas inhibition via somatostatin receptors is transduced by an inhibitory G-protein, Gi. Using an antibody that selectively recognizes alpha s, the monomeric, but not the heterotrimeric, alpha-subunit of Gs, we quantified the extent of dissociation of Gs in a competitive e.l.i.s.a. Incubation of S49-cell plasma membranes with 0.1 microM-isoprenaline, 100 microM free Mg2+ and 100 microM-GTP produced substantial subunit dissociation of Gs, which was reversible by addition of purified beta gamma-subunit dimer or somatostatin. Somatostatin produced an immediate (without a lag) time- and concentration-dependent decrease in the concentration of dissociated Gs (kinhib. for somatostatin = 51 +/- 12 nM) and in the activity of adenylate cyclase (kinhib. = 121 +/- 20 nM). By contrast, after addition of a 10-fold molar excess of beta gamma-dimer relative to alpha s, there was a 2-3 min lag, after which the beta gamma-dimer re-associated Gs. Isoprenaline-induced dissociation of Gs was accompanied by a release of alpha s from the incubated membranes to a post-100,000 g supernatant, and somatostatin could reverse this release. Immunoblot analysis with both a C-terminal anti-peptide antibody and an antibody directed against a sequence near the N-terminal also showed release of alpha s by the beta-agonist and reversal by somatostatin. Membrane release of Gs by isoprenaline that could be blocked by somatostatin was also confirmed in reconstitution studies of supernatant fraction into cyc- S49-cell membranes. We conclude that in native cell membranes somatostatin-induced activation of Gi dissociates Gi and interferes with the Gs activation cycle by providing beta gamma-dimer, which acts to prevent or reverse formation of monomeric alpha s. Because alpha s can be released from the cell membrane, regulation of the local concentration of GTP-liganded dissociated alpha s is likely to be an important factor in modulating the activity of adenylate cyclase.


1985 ◽  
Vol 108 (2) ◽  
pp. 200-205 ◽  
Author(s):  
Kikuo Kasai ◽  
Yoshinobu Suzuki ◽  
Masaki Hiraiwa ◽  
Hisamoto Kuroda ◽  
Tatsushi Emoto ◽  
...  

Abstract. Forskolin stimulates adenylate cyclase in human thyroid membranes approximately 7-fold with halfmaximal stimulation occurring at 5–10 μm. Guanine nucleotides are not required for stimulation of the enzyme by forskolin. Forskolin-stimulation is additive or greater than additive with that of TSH or Gpp(NH)p-(above 1 μm). Different from TSH- or Gpp(NH)p-stimulation of adenylate cyclase, uncoupling of the guanine nucleotide-binding regulatory component by increasing concentrations of MnCl2 did not result in uncoupling of forskolin stimulation. The finding indicates that forskolin may mainly act on the catalytic component of adenylate cyclase. From the present study, it is suggested that the diterpene forskolin stimulates adenylate cyclase in human thyroid membranes by a novel mechanism that differs from TSH- or Gpp(NH)p-stimulation, and that the diterpene may be a useful tool to investigate the metabolism of thyroid and its regulation in normal and pathological situations.


Sign in / Sign up

Export Citation Format

Share Document