scholarly journals Characterization of matrix-bound Band 3, the anion transport protein from human erythrocyte membranes.

1984 ◽  
Vol 259 (2) ◽  
pp. 785-790 ◽  
Author(s):  
A Boodhoo ◽  
R A Reithmeier
Biochemistry ◽  
1985 ◽  
Vol 24 (12) ◽  
pp. 2843-2848 ◽  
Author(s):  
Kimio Oikawa ◽  
Debra M. Lieberman ◽  
Reinhart A. F. Reithmeier

Author(s):  
Gheorghe Benga ◽  
Anthony Brain ◽  
Victor I. Pop ◽  
John Wrigglesworth

The intra-membrane particles (IMPs) observed on the fracture face of frozen erythrocyte membranes are thought to correspond primarily to “band 3” tetramers or dimers. Some recent studies correlating the inhibition of water diffusion in erythrocytes by p-chloromercuribenzene sulfonate (PCMBS) with the binding of 203Hg to erythrocyte membrane proteins has enabled band 3 and the polypeptides in band 4.5 to be identified as the proteins associated with the channels for water permeation in human erythrocytes. A further characterization of the effects of the incubation of human erythrocyte membranes with PCMBS and N-ethylmaleimide (NEM) has been performed as previously described. Experimental conditions have been previously described.A comparison was made of the appearance of freeze-etched membranes of control erythrocytes and erythrocytes with the sulphydryl reagents. It was found that on many of the control and NEM-treated cells, small (50-100 nm) elevated patches could be seen (Fig. 1, 2 and 3). These are present on both fracture and etch faces and are devoid of any intramembrane particles. The patch elevations were never observed in the membranes of PCMBS-treated cells (Fig. 4).


1982 ◽  
Vol 205 (3) ◽  
pp. 465-475 ◽  
Author(s):  
W J Mawby ◽  
J B Findlay

We investigated the presumed anion-binding domain of the anion-transport protein from human erythrocyte membranes, using 2,6-di-iodo-4-sulphophenyl isothiocyanate, an inhibitor of anion transport. The 125I-labelled reagent binds covalently to the protein with a half-maximal inhibitory concentration of 86 microM. Treatment of unsealed erythrocyte ‘ghosts’ with chymotrypsin yielded a membrane-bound fragment (mol.wt. 14 500 +/- 1000) that contained all the protein-bound radioactivity. The binding of the inhibitor to this peptide gave a pattern very similar to that obtained for the effect of the compound on phosphate transport into erythrocytes. The peptide is therefore presumed to be intimately involved in the mediation of anion exchange. Cleavage of the 14 500-mol.wt. transmembrane fragment with CNBr resulted in the production of two peptides with apparent molecular weights of 8800 and 4700. The 4700-mol.wt. peptide is the N-terminal portion of the 14 500-mol.wt. peptide. The attachment site for 2,6-di-iodo-4-sulphophenyl isothiocyanate is situated near the C-terminal of the 8800-mol.wt. peptide. This locates the inhibitor-binding site near the chymotrypsin cleavage point at the extracellular surface of the membrane. A partial sequence (residues 1-38) of the 8800-mol.wt. peptide was obtained.


2018 ◽  
Vol 74 (a1) ◽  
pp. a328-a328
Author(s):  
Yazan M. Abbas ◽  
Walter H. A. Kahr ◽  
Reinhart A. F. Reithmeier ◽  
John L. Rubinstein

1986 ◽  
Vol 102 (3) ◽  
pp. 997-1006 ◽  
Author(s):  
B W Shen ◽  
R Josephs ◽  
T L Steck

Filamentous skeletons were liberated from isolated human erythrocyte membranes in Triton X-100, spread on fenestrated carbon films, negatively stained, and viewed intact and unfixed in the transmission electron microscope. Two forms of the skeleton were examined: (a) basic skeletons, stripped of accessory proteins with 1.5 M NaCl so that they contain predominantly polypeptide bands 1, 2, 4.1, and 5; and (b) unstripped skeletons, which also bore accessory proteins such as ankyrin and band 3 and small plaques of residual lipid. Freshly prepared skeletons were highly condensed. Incubation at low ionic strength and in the presence of dithiothreitol for an hour or more caused an expansion of the skeletons, which greatly increased the visibility of their elements. The expansion may reflect the opening of spectrin from a compact to an elongated disposition. Expanded skeletons appeared to be organized as networks of short actin filaments joined by multiple (5-8) spectrin tetramers. In unstripped preparations, globular masses were observed near the centers of the spectrin filaments, probably corresponding to complexes of ankyrin with band 3 oligomers. Some of these globules linked pairs of spectrin filaments. Skeletons prepared with a minimum of perturbation had thickened actin protofilaments, presumably reflecting the presence of accessory proteins. The length of these actin filaments was highly uniform, averaging 33 +/- 5 nm. This is the length of nonmuscle tropomyosin. Since there is almost enough tropomyosin present to saturate the F-actin, our data support the hypothesis that tropomyosin may determine the length of actin protofilaments in the red cell membrane.


Sign in / Sign up

Export Citation Format

Share Document