carboxypeptidase y
Recently Published Documents


TOTAL DOCUMENTS

393
(FIVE YEARS 15)

H-INDEX

69
(FIVE YEARS 2)

2022 ◽  
Vol 112 ◽  
pp. 71-79
Author(s):  
Sivanesh Nanjan Easwaran ◽  
Anusha Subramanian Mohanakrishnan ◽  
Leelaram Santharam ◽  
Saravana Raj Adimoolam ◽  
Surianarayanan Mahadevan

Author(s):  
Sivanesh Nanjan Easwaran ◽  
Anusha Subramanian Mohanakrishnan ◽  
Leelaram Santharam ◽  
Saravana Raj Adimoolam ◽  
Surianarayanan Mahadevan

2021 ◽  
Author(s):  
Veronica Gast ◽  
Anna Sandegren ◽  
Finn Dunås ◽  
Siri Ekblad ◽  
Rezan Güler ◽  
...  

Abstract BackgroundAffibody molecules are synthetic peptides with a variety of therapeutic and diagnostic applications. To date, Affibody molecules have mainly been produced by the bacterial production host Escherichia coli. There is an interest in exploring alternative production hosts to address if improvements in terms of yield, ease of production and if purification advantages can be identified. In this study, we evaluated the feasibility of Saccharomyces cerevisiae as a production chassis for this group of proteins. Results We examined the production of three different Affibody molecules in S. cerevisiae and found that these Affibody molecules were partially degraded. An albumin-binding domain, which may be attached to the Affibody molecules to increase their half-life, showed to be a substrate for several S. cerevisiae proteases. We tested the removal of three vacuolar proteases, proteinase A, proteinase B and carboxypeptidase Y. Removal of one of these, proteinase A, resulted in intact secretion of one of the targeted Affibody molecules. Removal of either or both two additional proteases, carboxypeptidase Y and proteinase B, resulted in intact secretion of the two remaining Affibody molecules. The produced Affibody molecules were verified to bind human HER3 as potently as the corresponding molecules produced in E. coli in an in vitro surface-plasmon resonance binding assay. Finally, we performed a fed-batch fermentation with one of the engineered protease-deficient S. cerevisiae strains and achieved a protein titer of 530 mg Affibody molecule/L. ConclusionThis study shows that engineered S. cerevisiae has a great potential as a production host for recombinant Affibody molecules, reaching high yields and for proteins where endotoxin removal could be challenging, the use of S. cerevisiae obviates the need for endotoxin removal from protein produced in E. coli.


2021 ◽  
Vol 12 ◽  
Author(s):  
Jeanne Romero-Severson ◽  
Thomas E. Moran ◽  
Donna G. Shrader ◽  
Francisco R. Fields ◽  
Susan Pandey-Joshi ◽  
...  

Bacteriocins are a highly diverse group of antimicrobial peptides that have been identified in a wide range of commensal and probiotic organisms, especially those resident in host microbiomes. Rising antibiotic resistance have fueled renewed research into new drug scaffolds such as antimicrobial peptides for use in therapeutics. In this investigation, we examined mung bean seeds for endophytes possessing activity against human and plant pathogens. We isolated a novel strain of Bacillus safensis, from the contents of surface-sterilized mung bean seed, which we termed B. safensis C3. Genome sequencing of C3 identified three distinct biosynthetic systems that produce bacteriocin-based peptides. C3 exhibited antibacterial activity against Escherichia coli, Xanthomonas axonopodis, and Pseudomonas syringae. Robust antimicrobial activity of B. safensis C3 was observed when C3 was co-cultured with Bacillus subtilis. Using the cell-free supernatant of C3 and cation exchange chromatography, we enriched a product that retained antimicrobial activity against B. subtilis. The peptide was found to be approximately 3.3 kDa in size by mass spectrometry, and resistant to proteolysis by Carboxypeptidase Y and Endoproteinase GluC, suggesting that it is a modified variant of an AS-48 like bacteriocin. Our findings open new avenues into further development of novel bacteriocin-based scaffolds for therapeutic development, as well as further investigations into how our discoveries of bacteriocin-producing plant commensal microorganisms may have the potential for an immediate impact on the safety of food supplies.


2021 ◽  
Vol 22 (11) ◽  
pp. 5467
Author(s):  
Marc Dauplais ◽  
Pierre Mahou ◽  
Pierre Plateau ◽  
Myriam Lazard

Methylselenol (MeSeH) is a major cytotoxic metabolite of selenium, causing apoptosis in cancer cells through mechanisms that remain to be fully established. Previously, we demonstrated that, in Saccharomyces cerevisiae, MeSeH toxicity was mediated by its metabolization into selenomethionine by O-acetylhomoserine (OAH)-sulfhydrylase, an enzyme that is absent in higher eukaryotes. In this report, we used a mutant met17 yeast strain, devoid of OAH- sulfhydrylase activity, to identify alternative targets of MeSeH. Exposure to dimethyldiselenide (DMDSe), a direct precursor of MeSeH, caused an endoplasmic reticulum (ER) stress, as evidenced by increased expression of the ER chaperone Kar2p. Mutant strains (∆ire1 and ∆hac1) unable to activate the unfolded protein response were hypersensitive to MeSeH precursors but not to selenomethionine. In contrast, deletion of YAP1 or SKN7, required to activate the oxidative stress response, did not affect cell growth in the presence of DMDSe. ER maturation of newly synthesized carboxypeptidase Y was impaired, indicating that MeSeH/DMDSe caused protein misfolding in the ER. Exposure to DMDSe resulted in induction of the expression of the ER oxidoreductase Ero1p with concomitant reduction of its regulatory disulfide bonds. These results suggest that MeSeH disturbs protein folding in the ER by generating a reductive stress in this compartment.


2020 ◽  
Author(s):  
Dong Jun Park ◽  
Ngoc-Tu Nguyen ◽  
Ji Hun Kim ◽  
Ngoc-Han Nguyen ◽  
Sunchang Kim ◽  
...  

Abstract Background The signal peptide sequence is known to increase transport efficiency to organelles in eukaryotic cells. In this study, we focus on the signal peptide of the vacuolar protein for vacuolar targeting. Results The signal peptide sequence QRPL of carboxypeptidase Y (CPY), a vacuolar protein, was inserted inside the green fluorescent protein (GFP) that does not locate in vacuole for vacuolar targeting. The protein location was then confirmed by confocal microscopy. Fascinatingly, the green fluorescent protein that contains QRPL inside the sequence could be expressed faster than its natural form (within 1 hour after induction). In addition, aldehyde dehydrogenase 6 (ALD6), a cytosolic protein has engineered the sequence with QRPL to be transported to the vacuole. The aldehyde removal activity of ALD6 protein in the recombinant yeast was then analyzed by measuring the luminescent intensity in Vibrio fischeri . Conclusions In summary, the signal peptide QRPL could be used not only to transport target proteins accurately to vacuole but also to improve the protein activity, as well as to shorten the induction time.


2019 ◽  
Author(s):  
Ageo Miccoli ◽  
Binar A. Dhiani ◽  
Peter J. Thornton ◽  
Olivia A. Lambourne ◽  
Edward James ◽  
...  

Many cellular protein-protein interactions (PPIs) are mediated by phosphoserine. The specific targeting of these PPIs by phosphoserine-containing small molecules has been scarce due to the dephosphorylation of phosphoserine and its charged nature at physiological pH, which hinders its uptake into cells. To address these issues, we herein report the masking of the phosphate group of phosphoserine with biocleavable aryloxy triester phosphoramidate groups. A combination of <i>in vitro</i> enzymatic assays and <i>in silico</i> studies, using carboxypeptidase Y and Hint-1 respectively, showed that the phosphate masking groups are metabolized to release phosphoserine. To probe the applicability of this phosphoserine masking approach, it was applied to a phosphoserine-containing inhibitor of 14-3-3 dimerization, and this generated molecules with improved pharmacological activity in cells compared to their unmasked phosphoserine-containing parent compound. Collectively, the data showcases the masking of phosphoserine with biocleavable aryloxy triester phosphoramidate masking groups as an efficient intracellular delivery system for phosphoserine-containing molecules.


2019 ◽  
Author(s):  
Ageo Miccoli ◽  
Binar A. Dhiani ◽  
Peter J. Thornton ◽  
Olivia A. Lambourne ◽  
Edward James ◽  
...  

Many cellular protein-protein interactions (PPIs) are mediated by phosphoserine. The specific targeting of these PPIs by phosphoserine-containing small molecules has been scarce due to the dephosphorylation of phosphoserine and its charged nature at physiological pH, which hinders its uptake into cells. To address these issues, we herein report the masking of the phosphate group of phosphoserine with biocleavable aryloxy triester phosphoramidate groups. A combination of <i>in vitro</i> enzymatic assays and <i>in silico</i> studies, using carboxypeptidase Y and Hint-1 respectively, showed that the phosphate masking groups are metabolized to release phosphoserine. To probe the applicability of this phosphoserine masking approach, it was applied to a phosphoserine-containing inhibitor of 14-3-3 dimerization, and this generated molecules with improved pharmacological activity in cells compared to their unmasked phosphoserine-containing parent compound. Collectively, the data showcases the masking of phosphoserine with biocleavable aryloxy triester phosphoramidate masking groups as an efficient intracellular delivery system for phosphoserine-containing molecules.


2019 ◽  
Vol 30 (21) ◽  
pp. 2626-2638 ◽  
Author(s):  
Shiteshu Shrimal ◽  
Natalia A. Cherepanova ◽  
Elisabet C. Mandon ◽  
Sergey V. Venev ◽  
Reid Gilmore

Mammalian cells express two oligosaccharyltransferase complexes, STT3A and STT3B, that have distinct roles in N-linked glycosylation. The STT3A complex interacts directly with the protein translocation channel to mediate glycosylation of proteins using an N-terminal–to–C-terminal scanning mechanism. N-linked glycosylation of proteins in budding yeast has been assumed to be a cotranslational reaction. We have compared glycosylation of several glycoproteins in yeast and mammalian cells. Prosaposin, a cysteine-rich protein that contains STT3A-dependent glycosylation sites, is poorly glycosylated in yeast cells and STT3A-deficient human cells. In contrast, a protein with extreme C-terminal glycosylation sites was efficiently glycosylated in yeast by a posttranslocational mechanism. Posttranslocational glycosylation was also observed for carboxypeptidase Y–derived reporter proteins that contain closely spaced acceptor sites. A comparison of two recent protein structures indicates that the yeast OST is unable to interact with the yeast heptameric Sec complex via an evolutionarily conserved interface due to occupation of the OST binding site by the Sec63 protein. The efficiency of glycosylation in yeast is not enhanced for proteins that are translocated by the Sec61 or Ssh1 translocation channels instead of the Sec complex. We conclude that N-linked glycosylation and protein translocation are not directly coupled in yeast cells.


Sign in / Sign up

Export Citation Format

Share Document