water permeation
Recently Published Documents


TOTAL DOCUMENTS

464
(FIVE YEARS 130)

H-INDEX

46
(FIVE YEARS 8)

2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Xueling Wang ◽  
Qiang Lyu ◽  
Tiezheng Tong ◽  
Kuo Sun ◽  
Li-Chiang Lin ◽  
...  

AbstractRational design of high-performance stable metal–organic framework (MOF) membranes is challenging, especially for the sustainable treatment of hypersaline waters to address critical global environmental issues. Herein, a molecular-level intra-crystalline defect strategy combined with a selective layer thinning protocol is proposed to fabricate robust ultrathin missing-linker UiO-66 (ML-UiO-66) membrane to enable fast water permeation. Besides almost complete salt rejection, high and stable water flux is achieved even under long-term pervaporation operation in hash environments, which effectively addresses challenging stability issues. Then, detailed structural characterizations are employed to identify the type, chemical functionality, and density of intra-crystalline missing-linker defects. Moreover, molecular dynamics simulations shed light on the positive atomistic role of these defects, which are responsible for substantially enhancing structural hydrophilicity and enlarging pore window, consequently allowing ultra-fast water transport via a lower-energy-barrier pathway across three-dimensional sub-nanochannels during pervaporation. Unlike common unfavorable defect effects, the present positive intra-crystalline defect engineering concept at the molecular level is expected to pave a promising way toward not only rational design of next-generation MOF membranes with enhanced permeation performance, but additional water treatment applications.


Polymers ◽  
2021 ◽  
Vol 13 (24) ◽  
pp. 4436
Author(s):  
Aulia Chintia Ambarita ◽  
Sri Mulyati ◽  
Nasrul Arahman ◽  
Muhammad Roil Bilad ◽  
Norazanita Shamsuddin ◽  
...  

Polyethersulfone (PES) is the most commonly used polymer for membrane ultrafiltration because of its superior properties. However, it is hydrophobic, as such susceptible to fouling and low permeation rate. This study proposes a novel bio-based additive of dragonbloodin resin (DBR) for improving the properties and performance of PES-based membranes. Four flat sheet membranes were prepared by varying the concentration of DBR (0–3%) in the dope solutions using the phase inversion method. After fabrication, the membranes were thoroughly characterized and were tested for filtration of humic acid solution to investigate the effect of DBR loading. Results showed that the hydrophilicity, porosity, and water uptake increased along with the DBR loadings. The presence of DBR in the dope solution fastened the phase inversion, leading to a more porous microstructure, resulted in membranes with higher number and larger pore sizes. Those properties led to more superior hydraulic performances. The PES membranes loaded with DBR reached a clean water flux of 246.79 L/(m2·h), 25-folds higher than the pristine PES membrane at a loading of 3%. The flux of humic acid solution reached 154.5 ± 6.6 L/(m2·h), 30-folds higher than the pristine PES membrane with a slight decrease in rejection (71% vs. 60%). Moreover, DBR loaded membranes (2% and 3%) showed an almost complete flux recovery ratio over five cleaning cycles, demonstrating their excellent antifouling property. The hydraulic performance could possibly be enhanced by leaching the entrapped DBR to create more voids and pores for water permeation.


2021 ◽  
Author(s):  
Hossein Zargarnezhad ◽  
Edouard Asselin ◽  
Dennis Wong ◽  
C.N. Catherine Lam

Hydration of epoxy coatings reduces adhesion performance and causes degradation of the material, such as microstructural failures. Quantification of water vapor transport at elevated temperatures is fundamental to understanding polymer coating performance, especially when the coating is exposed to extreme operating conditions. As the water activity increases, the permeability/selectivity of polymers against other permeants changes. In this study, we examined the water permeation kinetics of two common epoxy-based powder coating systems for pipelines (fusion-bonded epoxy, FBE, and high-performance powder coating, HPPC) across a range of industrially-relevant temperatures (from room temperature to 80°C). Specifically, we utilized vapor permeation features of FBE and HPPC films with quantification of equilibrium flux as a function of temperature and pressure. In addition, we analyzed the nonlinear dependency of water transport on the vapor concentration at 65°C. The vapor transport analysis demonstrated that although data for FBE were indicative of a decrease in permeability around 65°C, perhaps due to self-association of water molecules, the coating was likely to experience a plasticization pressure around this temperature. We also examined microstructural changes of the epoxy network due to water transport. Our results revealed evidence of irreversible damage to epoxy coatings under wet-state conditions above 65°C. It appears that the combination of thermal exposure and internal stresses in the glassy epoxy lead to a phase separation of filler particles from the epoxy matrix, as well as to a distinctive cavity formation in the coating membrane. Yet, despite formation of percolating paths for water transport, our results indicate that vapor permeation is primarily restrained due to self-association of water molecules. The vapor transport flux and its permeance are lowered by one order of magnitude in the multilayered HPPC thanks to the moisture-resistant polyethylene topcoat, thus reducing the extent of damage to the underlying substrate. Since barrier protection against gas phase diffusion is controlled by the FBE primer, however, consequences of coating hydration are more pronounced in the overall selectivity toward gaseous transport. Hydrothermal exposure is likely to increase aggregate porosity of the coating and a conservative implementation of standard coating requirements is therefore reasonable to avoid early degradation issues.


Membranes ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 910
Author(s):  
Kgolofelo I. Malatjie ◽  
Bhekani S. Mbuli ◽  
Richard M. Moutloali ◽  
Catherine J. Ngila

This paper focuses on an in situ interfacial polymerization modification of polyamide thin film composite membranes with acrylic acid (AA) and zinc oxide (ZnO) nanoparticles. Consequent to this modification, the modified polyamide thin film composite (PA–TFC) membranes exhibited enhanced water permeability and Pb (II) heavy metal rejection. For example, the 0.50:1.50% ZnO/AA modified membranes showed water permeability of 29.85 ± 0.06 L·m−2·h−1·kPa−1 (pH 3), 4.16 ± 0.39 L·m−2·h−1·kPa−1 (pH 7), and 2.80 ± 0.21 L·m−2·h−1·kPa−1 1 (pH 11). This demonstrated enhanced pH responsive properties, and improved water permeability properties against unmodified membranes (2.29 ± 0.59 L·m−2·h−1·kPa−1, 1.79 ± 0.27 L·m−2·h−1·kPa−1, and 0.90 ± 0.21 L·m−2·h−1·kPa−1, respectively). Furthermore, the rejection of Pb (II) ions by the modified PA–TFC membranes was found to be 16.11 ± 0.12% (pH 3), 30.58 ± 0.33% (pH 7), and 96.67 ± 0.09% (pH 11). Additionally, the membranes modified with AA and ZnO/AA demonstrated a significant pH responsiveness compared to membranes modified with only ZnO nanoparticles and unmodified membranes. As such, this demonstrated the swelling behavior due to the inherent “gate effect” of the modified membranes. This was illustrated by the rejection and water permeation behavior, hydrophilic properties, and ion exchange capacity of the modified membranes. The pH responsiveness for the modified membranes was due to the –COOH and –OH functional groups introduced by the AA hydrogel and ZnO nanoparticles.


Materials ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 7000
Author(s):  
Iftikhar Ahmed Channa ◽  
Aqeel Ahmed Shah ◽  
Muhammad Rizwan ◽  
Muhammad Atif Makhdoom ◽  
Ali Dad Chandio ◽  
...  

Silica is one of the most efficient gas barrier materials, and hence is widely used as an encapsulating material for electronic devices. In general, the processing of silica is carried out at high temperatures, i.e., around 1000 °C. Recently, processing of silica has been carried out from a polymer called Perhydropolysilazane (PHPS). The PHPS reacts with environmental moisture or oxygen and yields pure silica. This material has attracted many researchers and has been widely used in many applications such as encapsulation of organic light-emitting diodes (OLED) displays, semiconductor industries, and organic solar cells. In this paper, we have demonstrated the process optimization of the conversion of the PHPS into silica in terms of curing methods as well as curing the environment. Various curing methods including exposure to dry heat, damp heat, deep UV, and their combination under different environments were used to cure PHPS. FTIR analysis suggested that the quickest conversion method is the irradiation of PHPS with deep UV and simultaneous heating at 100 °C. Curing with this method yields a water permeation rate of 10−3 g/(m2⋅day) and oxygen permeation rate of less than 10−1 cm3/(m2·day·bar). Rapid curing at low-temperature processing along with barrier properties makes PHPS an ideal encapsulating material for organic solar cell devices and a variety of similar applications.


2021 ◽  
Author(s):  
Hossein Zargarnezhad ◽  
Edouard Asselin ◽  
Dennis Wong ◽  
C.N. Catherine Lam

Hydration of epoxy coatings reduces adhesion performance and causes degradation of the material, such as microstructural failures. Quantification of water vapor transport at elevated temperatures is fundamental to understanding polymer coating performance, especially when the coating is exposed to extreme operating conditions. As the water activity increases, the permeability/selectivity of polymers against other permeants changes. In this study, we examined the water permeation kinetics of two common epoxy-based powder coating systems for pipelines (fusion-bonded epoxy, FBE, and high-performance powder coating, HPPC) across a range of industrially-relevant temperatures (from room temperature to 80°C). Specifically, we utilized vapor permeation features of FBE and HPPC films with quantification of equilibrium flux as a function of temperature and pressure. In addition, we analyzed the nonlinear dependency of water transport on the vapor concentration at 65°C. The vapor transport analysis demonstrated that although data for FBE were indicative of a decrease in permeability around 65°C, perhaps due to self-association of water molecules, the coating was likely to experience a plasticization pressure around this temperature. We also examined microstructural changes of the epoxy network due to water transport. Our results revealed evidence of irreversible damage to epoxy coatings under wet-state conditions above 65°C. It appears that the combination of thermal exposure and internal stresses in the glassy epoxy lead to a phase separation of filler particles from the epoxy matrix, as well as to a distinctive cavity formation in the coating membrane. Yet, despite formation of percolating paths for water transport, our results indicate that vapor permeation is primarily restrained due to self-association of water molecules. The vapor transport flux and its permeance are lowered by one order of magnitude in the multilayered HPPC thanks to the moisture-resistant polyethylene topcoat, thus reducing the extent of damage to the underlying substrate. Since barrier protection against gas phase diffusion is controlled by the FBE primer, however, consequences of coating hydration are more pronounced in the overall selectivity toward gaseous transport. Hydrothermal exposure is likely to increase aggregate porosity of the coating and a conservative implementation of standard coating requirements is therefore reasonable to avoid early degradation issues.


2021 ◽  
Author(s):  
Hossein Zargarnezhad ◽  
Edouard Asselin ◽  
Dennis Wong ◽  
C.N. Catherine Lam

Hydration of epoxy coatings reduces adhesion performance and causes degradation of the material, such as microstructural failures. Quantification of water vapor transport at elevated temperatures is fundamental to understanding polymer coating performance, especially when the coating is exposed to extreme operating conditions. As the water activity increases, the permeability/selectivity of polymers against other permeants changes. In this study, we examined the water permeation kinetics of two common epoxy-based powder coating systems for pipelines (fusion-bonded epoxy, FBE, and high-performance powder coating, HPPC) across a range of industrially-relevant temperatures (from room temperature to 80°C). Specifically, we utilized vapor permeation features of FBE and HPPC films with quantification of equilibrium flux as a function of temperature and pressure. In addition, we analyzed the nonlinear dependency of water transport on the vapor concentration at 65°C. The vapor transport analysis demonstrated that although data for FBE were indicative of a decrease in permeability around 65°C, perhaps due to self-association of water molecules, the coating was likely to experience a plasticization pressure around this temperature. We also examined microstructural changes of the epoxy network due to water transport. Our results revealed evidence of irreversible damage to epoxy coatings under wet-state conditions above 65°C. It appears that the combination of thermal exposure and internal stresses in the glassy epoxy lead to a phase separation of filler particles from the epoxy matrix, as well as to a distinctive cavity formation in the coating membrane. Yet, despite formation of percolating paths for water transport, our results indicate that vapor permeation is primarily restrained due to self-association of water molecules. The vapor transport flux and its permeance are lowered by one order of magnitude in the multilayered HPPC thanks to the moisture-resistant polyethylene topcoat, thus reducing the extent of damage to the underlying substrate. Since barrier protection against gas phase diffusion is controlled by the FBE primer, however, consequences of coating hydration are more pronounced in the overall selectivity toward gaseous transport. Hydrothermal exposure is likely to increase aggregate porosity of the coating and a conservative implementation of standard coating requirements is therefore reasonable to avoid early degradation issues.


2021 ◽  
Author(s):  
Matthias Wessling

The prediction of pressure and flow distributions inside porous membranes is important if the geometry deviates from single- bore tubular geometries. This task remains challenging, especially when considering local porosity variations caused by lumen- and shell-side membrane skins and macro- and micro-void structures, all of them present in multibore membranes.This study analyzes pure water forward and reverse permeation and backwashing phenomena for a polymeric multibore membrane with spatially-varying porosity and permeability properties using computational fluid dynamics simulations. The heterogeneity of porosity distribution is experimentally characterized by scanning electron microscopy scans and reconstructed cuboids of X-ray micro-computed tomography scans. The reconstructed cuboids are used to determine porosity, pore size distribution, and intrinsic permeability in the membrane’s porous structure in all spatial directions. These position-dependent properties are then applied to porous media flow simulations of the whole membrane domain with different properties for separation layer, support structure, and outside skin layer. Various cases mimicking the pure water permeation, fouling, and backwashing behavior of the membrane are simulated and compared to previously obtained MRI measurements.This work reveals (a) anisotropic permeability values and isoporosity in all directions and (b) differing contributions of each lumen channel to the total membrane performance, depending on the membrane-skin’s properties. This study encourages to pertain the quest of understanding the interaction of spatially distributed membrane properties and the overall membrane module performance of multibore membranes.


2021 ◽  
Vol 17 (9) ◽  
pp. e1009333
Author(s):  
Mathieu Le Verge-Serandour ◽  
Hervé Turlier

Fluid-filled biological cavities are ubiquitous, but their collective dynamics has remained largely unexplored from a physical perspective. Based on experimental observations in early embryos, we propose a model where a cavity forms through the coarsening of myriad of pressurized micrometric lumens, that interact by ion and fluid exchanges through the intercellular space. Performing extensive numerical simulations, we find that hydraulic fluxes lead to a self-similar coarsening of lumens in time, characterized by a robust dynamic scaling exponent. The collective dynamics is primarily controlled by hydraulic fluxes, which stem from lumen pressures differences and are dampened by water permeation through the membrane. Passive osmotic heterogeneities play, on the contrary, a minor role on cavity formation but active ion pumping can largely modify the coarsening dynamics: it prevents the lumen network from a collective collapse and gives rise to a novel coalescence-dominated regime exhibiting a distinct scaling law. Interestingly, we prove numerically that spatially biasing ion pumping may be sufficient to position the cavity, suggesting a novel mode of symmetry breaking to control tissue patterning. Providing generic testable predictions, our model forms a comprehensive theoretical basis for hydro-osmotic interaction between biological cavities, that shall find wide applications in embryo and tissue morphogenesis.


Sign in / Sign up

Export Citation Format

Share Document