scholarly journals Evaluation of the catalytic mechanism of recombinant human Csk (C-terminal Src kinase) using nucleotide analogs and viscosity effects.

1994 ◽  
Vol 269 (49) ◽  
pp. 30880-30887
Author(s):  
P A Cole ◽  
P Burn ◽  
B Takacs ◽  
C T Walsh
Biochemistry ◽  
1999 ◽  
Vol 38 (22) ◽  
pp. 7265-7272 ◽  
Author(s):  
Philippe Gonin ◽  
Yingwu Xu ◽  
Laurence Milon ◽  
Sandrine Dabernat ◽  
Michael Morr ◽  
...  

Author(s):  
Gary Bassell ◽  
Robert H. Singer

We have been investigating the spatial distribution of nucleic acids intracellularly using in situ hybridization. The use of non-isotopic nucleotide analogs incorporated into the DNA probe allows the detection of the probe at its site of hybridization within the cell. This approach therefore is compatible with the high resolution available by electron microscopy. Biotinated or digoxigenated probe can be detected by antibodies conjugated to colloidal gold. Because mRNA serves as a template for the probe fragments, the colloidal gold particles are detected as arrays which allow it to be unequivocally distinguished from background.


2019 ◽  
Vol 476 (21) ◽  
pp. 3333-3353 ◽  
Author(s):  
Malti Yadav ◽  
Kamalendu Pal ◽  
Udayaditya Sen

Cyclic dinucleotides (CDNs) have emerged as the central molecules that aid bacteria to adapt and thrive in changing environmental conditions. Therefore, tight regulation of intracellular CDN concentration by counteracting the action of dinucleotide cyclases and phosphodiesterases (PDEs) is critical. Here, we demonstrate that a putative stand-alone EAL domain PDE from Vibrio cholerae (VcEAL) is capable to degrade both the second messenger c-di-GMP and hybrid 3′3′-cyclic GMP–AMP (cGAMP). To unveil their degradation mechanism, we have determined high-resolution crystal structures of VcEAL with Ca2+, c-di-GMP-Ca2+, 5′-pGpG-Ca2+ and cGAMP-Ca2+, the latter provides the first structural basis of cGAMP hydrolysis. Structural studies reveal a typical triosephosphate isomerase barrel-fold with substrate c-di-GMP/cGAMP bound in an extended conformation. Highly conserved residues specifically bind the guanine base of c-di-GMP/cGAMP in the G2 site while the semi-conserved nature of residues at the G1 site could act as a specificity determinant. Two metal ions, co-ordinated with six stubbornly conserved residues and two non-bridging scissile phosphate oxygens of c-di-GMP/cGAMP, activate a water molecule for an in-line attack on the phosphodiester bond, supporting two-metal ion-based catalytic mechanism. PDE activity and biofilm assays of several prudently designed mutants collectively demonstrate that VcEAL active site is charge and size optimized. Intriguingly, in VcEAL-5′-pGpG-Ca2+ structure, β5–α5 loop adopts a novel conformation that along with conserved E131 creates a new metal-binding site. This novel conformation along with several subtle changes in the active site designate VcEAL-5′-pGpG-Ca2+ structure quite different from other 5′-pGpG bound structures reported earlier.


Pneumologie ◽  
2012 ◽  
Vol 66 (S 01) ◽  
Author(s):  
SM Loitsch ◽  
A Langanke ◽  
TOF Wagner ◽  
TO Hirche
Keyword(s):  
P38 Mapk ◽  

2016 ◽  
Author(s):  
Vikki Poole ◽  
Alice Fletcher ◽  
Bhavika Modasia ◽  
Neil Sharma ◽  
Rebecca Thompson ◽  
...  

2012 ◽  
Vol 17 (2) ◽  
pp. 145-159 ◽  
Author(s):  
Helen Creedon ◽  
Valerie G . Brunton

Author(s):  
Charbel Habchi ◽  
Sofiane Ouarets ◽  
Thierry Lemenand ◽  
Dominique Della-Valle ◽  
Jerome Bellettre ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document